Helicity and regularity of weak solutions to 3D Navier–Stokes equations

Ontology type: schema:ScholarlyArticle

Article Info

DATE

2021-07-31

AUTHORS ABSTRACT

We show that a Leray–Hopf weak solution to the three-dimensional Navier–Stokes the initial value problem is regular in (0, T] if ‖∇u0+‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \nabla u_0^+\Vert _2$$\end{document} (or ‖∇u0-‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \nabla u_0^-\Vert _2$$\end{document}) for initial value u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} and max{dHdt,0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{\frac{d{\mathcal H}}{dt},0\}$$\end{document} (or max{-dHdt,0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{-\frac{d{\mathcal H}}{dt},0\}$$\end{document}) are suitably small depending on the initial kinetic energy and viscosity, where u0+=∫0∞dEλu0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0^+=\int _0^{\infty } dE_\lambda u_0$$\end{document}, u0-=∫-∞0dEλu0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0^-=\int _{-\infty }^0 dE_\lambda u_0$$\end{document}, {Eλ}λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{E_\lambda \}_{\lambda \in {\mathbb R}}$$\end{document} is the spectral resolution of the curl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{curl}$$\end{document} operator and H≡∫R3u·curludx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}\equiv \int _{\mathbb R^3}u\cdot \mathrm{curl} u\,dx$$\end{document} is the helicity of the fluid flow. The results suggest that the helicity change rate rather than the magnitude of the helicity itself affects regularity of the viscous incompressible flows. More precisely, an initially regular viscous incompressible flow with suitably small positive or negative maximal helical component does not lose its regularity as long as the total helical behavior of the flow with respect to time is not decreasing, or even weakened at a moderate rate in accordance with the initial kinetic energy and viscosity. More... »

PAGES

435-445

Journal

TITLE

Annali dell' Università di Ferrara

ISSUE

2

VOLUME

67

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00370-w

DOI

http://dx.doi.org/10.1007/s11565-021-00370-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140106967

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Mathematics, State Academy of Sciences, Pyongyang, Democratic People\u2019s Republic of Korea",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Mathematics, State Academy of Sciences, Pyongyang, Democratic People\u2019s Republic of Korea"
],
"type": "Organization"
},
"familyName": "Ri",
"givenName": "Myong-Hwan",
"id": "sg:person.011235434705.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235434705.89"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-0348-8424-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006931006",
"https://doi.org/10.1007/978-3-0348-8424-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00205-015-0884-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027296678",
"https://doi.org/10.1007/s00205-015-0884-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10955-013-0746-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025574177",
"https://doi.org/10.1007/s10955-013-0746-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11565-009-0076-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005812851",
"https://doi.org/10.1007/s11565-009-0076-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11565-017-0274-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084031902",
"https://doi.org/10.1007/s11565-017-0274-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/b97593",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051586120",
"https://doi.org/10.1007/b97593"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02547354",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026181143",
"https://doi.org/10.1007/bf02547354"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-31",
"datePublishedReg": "2021-07-31",
"description": "We show that a Leray\u2013Hopf weak solution to the three-dimensional Navier\u2013Stokes the initial value problem is regular in (0,\u00a0T] if \u2016\u2207u0+\u20162\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Vert \\nabla u_0^+\\Vert _2$$\\end{document} (or \u2016\u2207u0-\u20162\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Vert \\nabla u_0^-\\Vert _2$$\\end{document}) for initial value u0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$u_0$$\\end{document} and max{dHdt,0}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\max \\{\\frac{d{\\mathcal H}}{dt},0\\}$$\\end{document} (or max{-dHdt,0}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\max \\{-\\frac{d{\\mathcal H}}{dt},0\\}$$\\end{document}) are suitably small depending on the initial kinetic energy and viscosity, where u0+=\u222b0\u221edE\u03bbu0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$u_0^+=\\int _0^{\\infty } dE_\\lambda u_0$$\\end{document}, u0-=\u222b-\u221e0dE\u03bbu0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$u_0^-=\\int _{-\\infty }^0 dE_\\lambda u_0$$\\end{document}, {E\u03bb}\u03bb\u2208R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{E_\\lambda \\}_{\\lambda \\in {\\mathbb R}}$$\\end{document} is the spectral resolution of the curl\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm{curl}$$\\end{document} operator and H\u2261\u222bR3u\u00b7curludx\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal H}\\equiv \\int _{\\mathbb R^3}u\\cdot \\mathrm{curl} u\\,dx$$\\end{document} is the helicity of the fluid flow. The results suggest that the helicity change rate rather than the magnitude of the helicity itself affects regularity of the viscous incompressible flows. More precisely, an initially regular viscous incompressible flow with suitably small positive or negative maximal helical component does not lose its regularity as long as the total helical behavior of the flow with respect to time is not decreasing, or even weakened at a moderate rate in accordance with the initial kinetic energy and viscosity.",
"genre": "article",
"id": "sg:pub.10.1007/s11565-021-00370-w",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136062",
"issn": [
"0430-3202",
"1827-1510"
],
"name": "Annali dell' Universit\u00e0 di Ferrara",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"viscous incompressible flow",
"three-dimensional Navier",
"initial kinetic energy",
"kinetic energy",
"incompressible flow",
"Navier-Stokes equations",
"fluid flow",
"Navier",
"initial value",
"energy",
"viscosity",
"spectral resolution",
"flow",
"change rate",
"rate",
"moderate rate",
"solution",
"Stokes",
"initial value problem",
"value problem",
"helical behavior",
"equations",
"weak solutions",
"problem",
"values",
"u0",
"resolution",
"operators",
"helicity",
"results",
"magnitude",
"regularity",
"helical component",
"components",
"behavior",
"respect",
"time",
"accordance",
"Leray\u2013Hopf weak solutions",
"helicity change rate",
"regular viscous incompressible flow",
"negative maximal helical component",
"maximal helical component",
"total helical behavior"
],
"name": "Helicity and regularity of weak solutions to 3D Navier\u2013Stokes equations",
"pagination": "435-445",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140106967"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11565-021-00370-w"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11565-021-00370-w",
"https://app.dimensions.ai/details/publication/pub.1140106967"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T19:02",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_885.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11565-021-00370-w"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00370-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00370-w'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00370-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00370-w'

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      22 PREDICATES      75 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
2 schema:author N923ff68469a44bfb8ac92ff6a49e71f3
3 schema:citation sg:pub.10.1007/978-3-0348-8424-2
4 sg:pub.10.1007/b97593
5 sg:pub.10.1007/bf02547354
6 sg:pub.10.1007/s00205-015-0884-8
7 sg:pub.10.1007/s10955-013-0746-4
8 sg:pub.10.1007/s11565-009-0076-2
9 sg:pub.10.1007/s11565-017-0274-2
10 schema:datePublished 2021-07-31
11 schema:datePublishedReg 2021-07-31
12 schema:description We show that a Leray–Hopf weak solution to the three-dimensional Navier–Stokes the initial value problem is regular in (0, T] if ‖∇u0+‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \nabla u_0^+\Vert _2$$\end{document} (or ‖∇u0-‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \nabla u_0^-\Vert _2$$\end{document}) for initial value u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} and max{dHdt,0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{\frac{d{\mathcal H}}{dt},0\}$$\end{document} (or max{-dHdt,0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{-\frac{d{\mathcal H}}{dt},0\}$$\end{document}) are suitably small depending on the initial kinetic energy and viscosity, where u0+=∫0∞dEλu0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0^+=\int _0^{\infty } dE_\lambda u_0$$\end{document}, u0-=∫-∞0dEλu0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0^-=\int _{-\infty }^0 dE_\lambda u_0$$\end{document}, {Eλ}λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{E_\lambda \}_{\lambda \in {\mathbb R}}$$\end{document} is the spectral resolution of the curl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{curl}$$\end{document} operator and H≡∫R3u·curludx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}\equiv \int _{\mathbb R^3}u\cdot \mathrm{curl} u\,dx$$\end{document} is the helicity of the fluid flow. The results suggest that the helicity change rate rather than the magnitude of the helicity itself affects regularity of the viscous incompressible flows. More precisely, an initially regular viscous incompressible flow with suitably small positive or negative maximal helical component does not lose its regularity as long as the total helical behavior of the flow with respect to time is not decreasing, or even weakened at a moderate rate in accordance with the initial kinetic energy and viscosity.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nb6604090e08d4f66851434123629d256
18 sg:journal.1136062
19 schema:keywords Leray–Hopf weak solutions
20 Navier
21 Navier-Stokes equations
22 Stokes
23 accordance
24 behavior
25 change rate
26 components
27 energy
28 equations
29 flow
30 fluid flow
31 helical behavior
32 helical component
33 helicity
34 helicity change rate
35 incompressible flow
36 initial kinetic energy
37 initial value
38 initial value problem
39 kinetic energy
40 magnitude
41 maximal helical component
42 moderate rate
43 negative maximal helical component
44 operators
45 problem
46 rate
47 regular viscous incompressible flow
48 regularity
49 resolution
50 respect
51 results
52 solution
53 spectral resolution
54 three-dimensional Navier
55 time
56 total helical behavior
57 u0
58 value problem
59 values
60 viscosity
61 viscous incompressible flow
62 weak solutions
63 schema:name Helicity and regularity of weak solutions to 3D Navier–Stokes equations
64 schema:pagination 435-445
65 schema:productId N99a164286c92499780a3700ccd290a94
66 N9fb4cc8497244f72b19014b9ae2bcfcc
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140106967
68 https://doi.org/10.1007/s11565-021-00370-w
69 schema:sdDatePublished 2022-01-01T19:02
71 schema:sdPublisher N00b7e2aabae84e699820841d3a074c45
72 schema:url https://doi.org/10.1007/s11565-021-00370-w
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N00b7e2aabae84e699820841d3a074c45 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N923ff68469a44bfb8ac92ff6a49e71f3 rdf:first sg:person.011235434705.89
79 rdf:rest rdf:nil
80 N99a164286c92499780a3700ccd290a94 schema:name dimensions_id
81 schema:value pub.1140106967
82 rdf:type schema:PropertyValue
83 N9fb4cc8497244f72b19014b9ae2bcfcc schema:name doi
84 schema:value 10.1007/s11565-021-00370-w
85 rdf:type schema:PropertyValue
86 Nb6604090e08d4f66851434123629d256 schema:issueNumber 2
87 rdf:type schema:PublicationIssue
89 rdf:type schema:PublicationVolume
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1136062 schema:issn 0430-3202
94 1827-1510
95 schema:name Annali dell' Università di Ferrara
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.011235434705.89 schema:affiliation grid-institutes:None
99 schema:familyName Ri
100 schema:givenName Myong-Hwan
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235434705.89
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-0348-8424-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006931006
104 https://doi.org/10.1007/978-3-0348-8424-2
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/b97593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051586120
107 https://doi.org/10.1007/b97593
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
110 https://doi.org/10.1007/bf02547354
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00205-015-0884-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027296678
113 https://doi.org/10.1007/s00205-015-0884-8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10955-013-0746-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025574177
116 https://doi.org/10.1007/s10955-013-0746-4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11565-009-0076-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005812851
119 https://doi.org/10.1007/s11565-009-0076-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11565-017-0274-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031902
122 https://doi.org/10.1007/s11565-017-0274-2
123 rdf:type schema:CreativeWork
124 grid-institutes:None schema:alternateName Institute of Mathematics, State Academy of Sciences, Pyongyang, Democratic People’s Republic of Korea
125 schema:name Institute of Mathematics, State Academy of Sciences, Pyongyang, Democratic People’s Republic of Korea
126 rdf:type schema:Organization