# Space curves, X-ranks and cuspidal projections

Ontology type: schema:ScholarlyArticle      Open Access: True

### Article Info

DATE

2021-07-01

AUTHORS ABSTRACT

Let X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} be an integral and non-degenerate curve. We say that q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document} has X-rank 3 if there is no line L⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subset \mathbb {P}^3$$\end{document} such that q∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in L$$\end{document} and #(L∩X)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#(L\cap X)\ge 2$$\end{document}. We prove that for all hyperelliptic curves of genus g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document} there is a degree g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g+3$$\end{document} embedding X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points with X-rank 3 and another embedding without points with X-rank 3 but with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points q∈P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3$$\end{document} such that there is a unique pair of points of X spanning a line containing q. We also prove the non-existence of points of X-rank 3 for general curves of bidegree (a, b) in a smooth quadric (except in known exceptional cases) and we give lower bounds for the number of pairs of points of X spanning a line containing a fixed q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document}. For all integers g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document}, x≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\ge 0$$\end{document} we prove the existence of a nodal hyperelliptic curve X with geometric genus g, exactly x nodes, deg(X)=x+g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg (X) = x+g+3$$\end{document} and having at least x+2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x+2g+2$$\end{document} points of X-rank 3. More... »

PAGES

217-229

### References to SciGraph publications

• 1981-03. Cuspidal projections of space curves in MATHEMATISCHE ANNALEN
• 2006-02-06. Sur les espaces multisécants aux courbes algébriques in MANUSCRIPTA MATHEMATICA
• 1977. Numerical Characters of a Curve in Projective n-Space in REAL AND COMPLEX SINGULARITIES, OSLO 1976
• 1999. Power Sums, Gorenstein Algebras, and Determinantal Loci in NONE
• 2017-08-10. On the locus of points of high rank in EUROPEAN JOURNAL OF MATHEMATICS
• 2010-10-22. On the Rank of a Binary Form in FOUNDATIONS OF COMPUTATIONAL MATHEMATICS
• 2009-10-29. On the Ranks and Border Ranks of Symmetric Tensors in FOUNDATIONS OF COMPUTATIONAL MATHEMATICS
• 1977. Algebraic Geometry in NONE
• ### Journal

TITLE

Annali dell' Università di Ferrara

ISSUE

2

VOLUME

67

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4

DOI

http://dx.doi.org/10.1007/s11565-021-00368-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139314222

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Trento, 38123, Povo TN, Italy",
"id": "http://www.grid.ac/institutes/grid.11696.39",
"name": [
"Department of Mathematics, University of Trento, 38123, Povo TN, Italy"
],
"type": "Organization"
},
"familyName": "Ballico",
"givenName": "Edoardo",
"id": "sg:person.012743066121.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743066121.85"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10208-009-9055-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048706154",
"https://doi.org/10.1007/s10208-009-9055-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01450947",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014367691",
"https://doi.org/10.1007/bf01450947"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40879-017-0172-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091146785",
"https://doi.org/10.1007/s40879-017-0172-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-010-1289-8_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089506014",
"https://doi.org/10.1007/978-94-010-1289-8_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00229-005-0621-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051019002",
"https://doi.org/10.1007/s00229-005-0621-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0093426",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025532703",
"https://doi.org/10.1007/bfb0093426"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10208-010-9077-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012234253",
"https://doi.org/10.1007/s10208-010-9077-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3849-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001329144",
"https://doi.org/10.1007/978-1-4757-3849-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-01",
"datePublishedReg": "2021-07-01",
"description": "Let X\u2282P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X\\subset \\mathbb {P}^3$$\\end{document} be an integral and non-degenerate curve. We say that q\u2208P3\\X\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in \\mathbb {P}^3\\setminus X$$\\end{document} has X-rank 3 if there is no line L\u2282P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L\\subset \\mathbb {P}^3$$\\end{document} such that q\u2208L\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in L$$\\end{document} and #(L\u2229X)\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\#(L\\cap X)\\ge 2$$\\end{document}. We prove that for all hyperelliptic curves of genus g\u22655\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g\\ge 5$$\\end{document} there is a degree g+3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g+3$$\\end{document} embedding X\u2282P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X\\subset \\mathbb {P}^3$$\\end{document} with exactly 2g+2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2g+2$$\\end{document} points with X-rank 3 and another embedding without points with X-rank 3 but with exactly 2g+2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2g+2$$\\end{document} points q\u2208P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in \\mathbb {P}^3$$\\end{document} such that there is a unique pair of points of X spanning a line containing q. We also prove the non-existence of points of X-rank 3 for general curves of bidegree (a,\u00a0b) in a smooth quadric (except in known exceptional cases) and we give lower bounds for the number of pairs of points of X spanning a line containing a fixed q\u2208P3\\X\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in \\mathbb {P}^3\\setminus X$$\\end{document}. For all integers g\u22655\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g\\ge 5$$\\end{document}, x\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x\\ge 0$$\\end{document} we prove the existence of a nodal hyperelliptic curve X with geometric genus g, exactly x nodes, deg(X)=x+g+3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\deg (X) = x+g+3$$\\end{document} and having at least x+2g+2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x+2g+2$$\\end{document} points of X-rank 3.",
"genre": "article",
"id": "sg:pub.10.1007/s11565-021-00368-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136062",
"issn": [
"0430-3202",
"1827-1510"
],
"name": "Annali dell' Universit\u00e0 di Ferrara",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"curves",
"lines",
"point",
"degree",
"unique pair",
"number",
"nodes",
"projections",
"pairs",
"rank",
"non-degenerate curve",
"genus",
"embedding",
"existence",
"number of pairs",
"rank 3",
"general curve",
"bounds",
"curve X",
"hyperelliptic curves",
"bidegree",
"lower bounds",
"integers",
"geometric genus",
"space curves",
"hyperelliptic curve X",
"cuspidal projections"
],
"name": "Space curves, X-ranks and cuspidal projections",
"pagination": "217-229",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1139314222"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11565-021-00368-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11565-021-00368-4",
"https://app.dimensions.ai/details/publication/pub.1139314222"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T18:59",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11565-021-00368-4"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      62 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11565-021-00368-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbeaec366874f490db22302bd7df865d3
4 schema:citation sg:pub.10.1007/978-1-4757-3849-0
5 sg:pub.10.1007/978-94-010-1289-8_13
6 sg:pub.10.1007/bf01450947
7 sg:pub.10.1007/bfb0093426
8 sg:pub.10.1007/s00229-005-0621-y
9 sg:pub.10.1007/s10208-009-9055-3
10 sg:pub.10.1007/s10208-010-9077-x
11 sg:pub.10.1007/s40879-017-0172-2
12 schema:datePublished 2021-07-01
13 schema:datePublishedReg 2021-07-01
14 schema:description Let X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} be an integral and non-degenerate curve. We say that q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document} has X-rank 3 if there is no line L⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subset \mathbb {P}^3$$\end{document} such that q∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in L$$\end{document} and #(L∩X)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#(L\cap X)\ge 2$$\end{document}. We prove that for all hyperelliptic curves of genus g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document} there is a degree g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g+3$$\end{document} embedding X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points with X-rank 3 and another embedding without points with X-rank 3 but with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points q∈P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3$$\end{document} such that there is a unique pair of points of X spanning a line containing q. We also prove the non-existence of points of X-rank 3 for general curves of bidegree (a, b) in a smooth quadric (except in known exceptional cases) and we give lower bounds for the number of pairs of points of X spanning a line containing a fixed q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document}. For all integers g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document}, x≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\ge 0$$\end{document} we prove the existence of a nodal hyperelliptic curve X with geometric genus g, exactly x nodes, deg(X)=x+g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg (X) = x+g+3$$\end{document} and having at least x+2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x+2g+2$$\end{document} points of X-rank 3.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N14c2eaedafa049129a8e2d7fae1c760b
19 N37a434c7ff5c41be8bf6907784f77c80
20 sg:journal.1136062
21 schema:keywords bidegree
22 bounds
23 curve X
24 curves
25 cuspidal projections
26 degree
27 embedding
28 existence
29 general curve
30 genus
31 geometric genus
32 hyperelliptic curve X
33 hyperelliptic curves
34 integers
35 lines
36 lower bounds
37 nodes
38 non-degenerate curve
39 number
40 number of pairs
41 pairs
42 point
43 projections
45 rank
46 rank 3
48 space curves
49 unique pair
50 schema:name Space curves, X-ranks and cuspidal projections
51 schema:pagination 217-229
52 schema:productId N5996b166f799499dbc35d6ca595847b0
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139314222
55 https://doi.org/10.1007/s11565-021-00368-4
56 schema:sdDatePublished 2022-01-01T18:59
58 schema:sdPublisher N5b4d443d5c6643a7b7cbb6ff42a55ebb
59 schema:url https://doi.org/10.1007/s11565-021-00368-4
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N14c2eaedafa049129a8e2d7fae1c760b schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N37a434c7ff5c41be8bf6907784f77c80 schema:volumeNumber 67
66 rdf:type schema:PublicationVolume
67 N5996b166f799499dbc35d6ca595847b0 schema:name dimensions_id
68 schema:value pub.1139314222
69 rdf:type schema:PropertyValue
70 N5b4d443d5c6643a7b7cbb6ff42a55ebb schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nbeaec366874f490db22302bd7df865d3 rdf:first sg:person.012743066121.85
73 rdf:rest rdf:nil
74 Nc75044fadfda44528e7bfc8d88cf25c2 schema:name doi
75 schema:value 10.1007/s11565-021-00368-4
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136062 schema:issn 0430-3202
84 1827-1510
85 schema:name Annali dell' Università di Ferrara
86 schema:publisher Springer Nature
87 rdf:type schema:Periodical
88 sg:person.012743066121.85 schema:affiliation grid-institutes:grid.11696.39
89 schema:familyName Ballico
90 schema:givenName Edoardo
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743066121.85
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4757-3849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329144
94 https://doi.org/10.1007/978-1-4757-3849-0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-94-010-1289-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089506014
97 https://doi.org/10.1007/978-94-010-1289-8_13
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01450947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014367691
100 https://doi.org/10.1007/bf01450947
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bfb0093426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025532703
103 https://doi.org/10.1007/bfb0093426
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00229-005-0621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051019002
106 https://doi.org/10.1007/s00229-005-0621-y
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10208-009-9055-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048706154
109 https://doi.org/10.1007/s10208-009-9055-3
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10208-010-9077-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012234253
112 https://doi.org/10.1007/s10208-010-9077-x
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s40879-017-0172-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146785
115 https://doi.org/10.1007/s40879-017-0172-2
116 rdf:type schema:CreativeWork
117 grid-institutes:grid.11696.39 schema:alternateName Department of Mathematics, University of Trento, 38123, Povo TN, Italy
118 schema:name Department of Mathematics, University of Trento, 38123, Povo TN, Italy
119 rdf:type schema:Organization

Preview window. Press ESC to close (or click here)

...