Space curves, X-ranks and cuspidal projections View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-01

AUTHORS

Edoardo Ballico

ABSTRACT

Let X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} be an integral and non-degenerate curve. We say that q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document} has X-rank 3 if there is no line L⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subset \mathbb {P}^3$$\end{document} such that q∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in L$$\end{document} and #(L∩X)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#(L\cap X)\ge 2$$\end{document}. We prove that for all hyperelliptic curves of genus g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document} there is a degree g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g+3$$\end{document} embedding X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points with X-rank 3 and another embedding without points with X-rank 3 but with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points q∈P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3$$\end{document} such that there is a unique pair of points of X spanning a line containing q. We also prove the non-existence of points of X-rank 3 for general curves of bidegree (a, b) in a smooth quadric (except in known exceptional cases) and we give lower bounds for the number of pairs of points of X spanning a line containing a fixed q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document}. For all integers g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document}, x≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\ge 0$$\end{document} we prove the existence of a nodal hyperelliptic curve X with geometric genus g, exactly x nodes, deg(X)=x+g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg (X) = x+g+3$$\end{document} and having at least x+2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x+2g+2$$\end{document} points of X-rank 3. More... »

PAGES

217-229

References to SciGraph publications

  • 1981-03. Cuspidal projections of space curves in MATHEMATISCHE ANNALEN
  • 2006-02-06. Sur les espaces multisécants aux courbes algébriques in MANUSCRIPTA MATHEMATICA
  • 1977. Numerical Characters of a Curve in Projective n-Space in REAL AND COMPLEX SINGULARITIES, OSLO 1976
  • 1999. Power Sums, Gorenstein Algebras, and Determinantal Loci in NONE
  • 2017-08-10. On the locus of points of high rank in EUROPEAN JOURNAL OF MATHEMATICS
  • 2010-10-22. On the Rank of a Binary Form in FOUNDATIONS OF COMPUTATIONAL MATHEMATICS
  • 2009-10-29. On the Ranks and Border Ranks of Symmetric Tensors in FOUNDATIONS OF COMPUTATIONAL MATHEMATICS
  • 1977. Algebraic Geometry in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4

    DOI

    http://dx.doi.org/10.1007/s11565-021-00368-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139314222


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Trento, 38123, Povo TN, Italy", 
              "id": "http://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Department of Mathematics, University of Trento, 38123, Povo TN, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ballico", 
            "givenName": "Edoardo", 
            "id": "sg:person.012743066121.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743066121.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10208-009-9055-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048706154", 
              "https://doi.org/10.1007/s10208-009-9055-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01450947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014367691", 
              "https://doi.org/10.1007/bf01450947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40879-017-0172-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091146785", 
              "https://doi.org/10.1007/s40879-017-0172-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-1289-8_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089506014", 
              "https://doi.org/10.1007/978-94-010-1289-8_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00229-005-0621-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051019002", 
              "https://doi.org/10.1007/s00229-005-0621-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0093426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025532703", 
              "https://doi.org/10.1007/bfb0093426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10208-010-9077-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012234253", 
              "https://doi.org/10.1007/s10208-010-9077-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3849-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001329144", 
              "https://doi.org/10.1007/978-1-4757-3849-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-01", 
        "datePublishedReg": "2021-07-01", 
        "description": "Let X\u2282P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X\\subset \\mathbb {P}^3$$\\end{document} be an integral and non-degenerate curve. We say that q\u2208P3\\X\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in \\mathbb {P}^3\\setminus X$$\\end{document} has X-rank 3 if there is no line L\u2282P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L\\subset \\mathbb {P}^3$$\\end{document} such that q\u2208L\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in L$$\\end{document} and #(L\u2229X)\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\#(L\\cap X)\\ge 2$$\\end{document}. We prove that for all hyperelliptic curves of genus g\u22655\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g\\ge 5$$\\end{document} there is a degree g+3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g+3$$\\end{document} embedding X\u2282P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X\\subset \\mathbb {P}^3$$\\end{document} with exactly 2g+2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2g+2$$\\end{document} points with X-rank 3 and another embedding without points with X-rank 3 but with exactly 2g+2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2g+2$$\\end{document} points q\u2208P3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in \\mathbb {P}^3$$\\end{document} such that there is a unique pair of points of X spanning a line containing q. We also prove the non-existence of points of X-rank 3 for general curves of bidegree (a,\u00a0b) in a smooth quadric (except in known exceptional cases) and we give lower bounds for the number of pairs of points of X spanning a line containing a fixed q\u2208P3\\X\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q\\in \\mathbb {P}^3\\setminus X$$\\end{document}. For all integers g\u22655\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g\\ge 5$$\\end{document}, x\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x\\ge 0$$\\end{document} we prove the existence of a nodal hyperelliptic curve X with geometric genus g, exactly x nodes, deg(X)=x+g+3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\deg (X) = x+g+3$$\\end{document} and having at least x+2g+2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x+2g+2$$\\end{document} points of X-rank 3.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11565-021-00368-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136062", 
            "issn": [
              "0430-3202", 
              "1827-1510"
            ], 
            "name": "Annali dell' Universit\u00e0 di Ferrara", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "curves", 
          "lines", 
          "point", 
          "degree", 
          "unique pair", 
          "number", 
          "nodes", 
          "projections", 
          "pairs", 
          "rank", 
          "non-degenerate curve", 
          "genus", 
          "embedding", 
          "existence", 
          "number of pairs", 
          "rank 3", 
          "general curve", 
          "smooth quadric", 
          "bounds", 
          "curve X", 
          "hyperelliptic curves", 
          "bidegree", 
          "quadrics", 
          "lower bounds", 
          "integers", 
          "geometric genus", 
          "space curves", 
          "hyperelliptic curve X", 
          "cuspidal projections"
        ], 
        "name": "Space curves, X-ranks and cuspidal projections", 
        "pagination": "217-229", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139314222"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11565-021-00368-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11565-021-00368-4", 
          "https://app.dimensions.ai/details/publication/pub.1139314222"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11565-021-00368-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00368-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      22 PREDICATES      62 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11565-021-00368-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbeaec366874f490db22302bd7df865d3
    4 schema:citation sg:pub.10.1007/978-1-4757-3849-0
    5 sg:pub.10.1007/978-94-010-1289-8_13
    6 sg:pub.10.1007/bf01450947
    7 sg:pub.10.1007/bfb0093426
    8 sg:pub.10.1007/s00229-005-0621-y
    9 sg:pub.10.1007/s10208-009-9055-3
    10 sg:pub.10.1007/s10208-010-9077-x
    11 sg:pub.10.1007/s40879-017-0172-2
    12 schema:datePublished 2021-07-01
    13 schema:datePublishedReg 2021-07-01
    14 schema:description Let X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} be an integral and non-degenerate curve. We say that q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document} has X-rank 3 if there is no line L⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subset \mathbb {P}^3$$\end{document} such that q∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in L$$\end{document} and #(L∩X)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#(L\cap X)\ge 2$$\end{document}. We prove that for all hyperelliptic curves of genus g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document} there is a degree g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g+3$$\end{document} embedding X⊂P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset \mathbb {P}^3$$\end{document} with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points with X-rank 3 and another embedding without points with X-rank 3 but with exactly 2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+2$$\end{document} points q∈P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3$$\end{document} such that there is a unique pair of points of X spanning a line containing q. We also prove the non-existence of points of X-rank 3 for general curves of bidegree (a, b) in a smooth quadric (except in known exceptional cases) and we give lower bounds for the number of pairs of points of X spanning a line containing a fixed q∈P3\X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {P}^3\setminus X$$\end{document}. For all integers g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 5$$\end{document}, x≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\ge 0$$\end{document} we prove the existence of a nodal hyperelliptic curve X with geometric genus g, exactly x nodes, deg(X)=x+g+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg (X) = x+g+3$$\end{document} and having at least x+2g+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x+2g+2$$\end{document} points of X-rank 3.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N14c2eaedafa049129a8e2d7fae1c760b
    19 N37a434c7ff5c41be8bf6907784f77c80
    20 sg:journal.1136062
    21 schema:keywords bidegree
    22 bounds
    23 curve X
    24 curves
    25 cuspidal projections
    26 degree
    27 embedding
    28 existence
    29 general curve
    30 genus
    31 geometric genus
    32 hyperelliptic curve X
    33 hyperelliptic curves
    34 integers
    35 lines
    36 lower bounds
    37 nodes
    38 non-degenerate curve
    39 number
    40 number of pairs
    41 pairs
    42 point
    43 projections
    44 quadrics
    45 rank
    46 rank 3
    47 smooth quadric
    48 space curves
    49 unique pair
    50 schema:name Space curves, X-ranks and cuspidal projections
    51 schema:pagination 217-229
    52 schema:productId N5996b166f799499dbc35d6ca595847b0
    53 Nc75044fadfda44528e7bfc8d88cf25c2
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139314222
    55 https://doi.org/10.1007/s11565-021-00368-4
    56 schema:sdDatePublished 2022-01-01T18:59
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N5b4d443d5c6643a7b7cbb6ff42a55ebb
    59 schema:url https://doi.org/10.1007/s11565-021-00368-4
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N14c2eaedafa049129a8e2d7fae1c760b schema:issueNumber 2
    64 rdf:type schema:PublicationIssue
    65 N37a434c7ff5c41be8bf6907784f77c80 schema:volumeNumber 67
    66 rdf:type schema:PublicationVolume
    67 N5996b166f799499dbc35d6ca595847b0 schema:name dimensions_id
    68 schema:value pub.1139314222
    69 rdf:type schema:PropertyValue
    70 N5b4d443d5c6643a7b7cbb6ff42a55ebb schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nbeaec366874f490db22302bd7df865d3 rdf:first sg:person.012743066121.85
    73 rdf:rest rdf:nil
    74 Nc75044fadfda44528e7bfc8d88cf25c2 schema:name doi
    75 schema:value 10.1007/s11565-021-00368-4
    76 rdf:type schema:PropertyValue
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136062 schema:issn 0430-3202
    84 1827-1510
    85 schema:name Annali dell' Università di Ferrara
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.012743066121.85 schema:affiliation grid-institutes:grid.11696.39
    89 schema:familyName Ballico
    90 schema:givenName Edoardo
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743066121.85
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-1-4757-3849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329144
    94 https://doi.org/10.1007/978-1-4757-3849-0
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-94-010-1289-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089506014
    97 https://doi.org/10.1007/978-94-010-1289-8_13
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01450947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014367691
    100 https://doi.org/10.1007/bf01450947
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bfb0093426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025532703
    103 https://doi.org/10.1007/bfb0093426
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s00229-005-0621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051019002
    106 https://doi.org/10.1007/s00229-005-0621-y
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s10208-009-9055-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048706154
    109 https://doi.org/10.1007/s10208-009-9055-3
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s10208-010-9077-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012234253
    112 https://doi.org/10.1007/s10208-010-9077-x
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s40879-017-0172-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146785
    115 https://doi.org/10.1007/s40879-017-0172-2
    116 rdf:type schema:CreativeWork
    117 grid-institutes:grid.11696.39 schema:alternateName Department of Mathematics, University of Trento, 38123, Povo TN, Italy
    118 schema:name Department of Mathematics, University of Trento, 38123, Povo TN, Italy
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...