Approximation by modified Szász-Kantorovich type operators based on Brenke type polynomials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05-22

AUTHORS

Ajay Kumar, Ram Pratap

ABSTRACT

In this paper, a modification of Szász-Kantorovich type operators based on Brenke-type polynomials is introduced, and the convergence properties of the proposed operators with the help of Korovkin’s theorem are discussed. The order of convergence of these operators with the aid of classical and second-order modulus of continuity is studied. A Voronovkaja-type theorem is also established. Lastly, the rate of convergence and error estimation of these operators compared with the existing operators with the help of some graphs and tables using Mathematica. More... »

PAGES

337-354

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00365-7

DOI

http://dx.doi.org/10.1007/s11565-021-00365-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138269469


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India", 
          "id": "http://www.grid.ac/institutes/grid.19003.3b", 
          "name": [
            "Department of Mathematics, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Ajay", 
        "id": "sg:person.013171306055.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171306055.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Miranda House, University of Delhi, 110007, Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Mathematics, Miranda House, University of Delhi, 110007, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pratap", 
        "givenName": "Ram", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13660-016-1257-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036219689", 
          "https://doi.org/10.1186/s13660-016-1257-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00025-012-0236-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007552523", 
          "https://doi.org/10.1007/s00025-012-0236-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016669689", 
          "https://doi.org/10.1007/bf01982010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13370-019-00746-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122984748", 
          "https://doi.org/10.1007/s13370-019-00746-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12190-010-0441-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020460024", 
          "https://doi.org/10.1007/s12190-010-0441-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-018-0553-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100405840", 
          "https://doi.org/10.1007/s11117-018-0553-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-016-0688-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011578418", 
          "https://doi.org/10.1007/s00009-016-0688-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1215/20088752-3764507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064414723", 
          "https://doi.org/10.1215/20088752-3764507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4778-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015861055", 
          "https://doi.org/10.1007/978-1-4612-4778-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05-22", 
    "datePublishedReg": "2021-05-22", 
    "description": "In this paper, a modification of Sz\u00e1sz-Kantorovich type operators based on Brenke-type polynomials is introduced, and the convergence properties of the proposed operators with the help of Korovkin\u2019s theorem are discussed. The order of convergence of these operators with the aid of classical and second-order modulus of continuity is studied. A Voronovkaja-type theorem is also established. Lastly, the rate of convergence and error estimation of these operators compared with the existing operators with the help of some graphs and tables using Mathematica.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11565-021-00365-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136062", 
        "issn": [
          "0430-3202", 
          "1827-1510"
        ], 
        "name": "Annali dell' Universit\u00e0 di Ferrara", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "keywords": [
      "Brenke type polynomials", 
      "type operators", 
      "order of convergence", 
      "second order modulus", 
      "rate of convergence", 
      "convergence properties", 
      "Korovkin theorem", 
      "error estimation", 
      "theorem", 
      "type polynomials", 
      "operators", 
      "polynomials", 
      "convergence", 
      "Mathematica", 
      "approximation", 
      "graph", 
      "estimation", 
      "help", 
      "properties", 
      "order", 
      "continuity", 
      "table", 
      "modulus", 
      "aid", 
      "modification", 
      "rate", 
      "paper", 
      "Sz\u00e1sz-Kantorovich type operators", 
      "Voronovkaja-type theorem"
    ], 
    "name": "Approximation by modified Sz\u00e1sz-Kantorovich type operators based on Brenke type polynomials", 
    "pagination": "337-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138269469"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11565-021-00365-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11565-021-00365-7", 
      "https://app.dimensions.ai/details/publication/pub.1138269469"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_903.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11565-021-00365-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00365-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00365-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00365-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00365-7'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      62 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11565-021-00365-7 schema:about anzsrc-for:01
2 schema:author Nf1e156ee0851460da09efc1c6d10c0b8
3 schema:citation sg:pub.10.1007/978-1-4612-4778-4
4 sg:pub.10.1007/bf01982010
5 sg:pub.10.1007/s00009-016-0688-6
6 sg:pub.10.1007/s00025-012-0236-z
7 sg:pub.10.1007/s11117-018-0553-x
8 sg:pub.10.1007/s12190-010-0441-4
9 sg:pub.10.1007/s13370-019-00746-4
10 sg:pub.10.1186/s13660-016-1257-z
11 sg:pub.10.1215/20088752-3764507
12 schema:datePublished 2021-05-22
13 schema:datePublishedReg 2021-05-22
14 schema:description In this paper, a modification of Szász-Kantorovich type operators based on Brenke-type polynomials is introduced, and the convergence properties of the proposed operators with the help of Korovkin’s theorem are discussed. The order of convergence of these operators with the aid of classical and second-order modulus of continuity is studied. A Voronovkaja-type theorem is also established. Lastly, the rate of convergence and error estimation of these operators compared with the existing operators with the help of some graphs and tables using Mathematica.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N87ead6ca67844ad582dd219f65866cb8
19 Nb5f0c2d9e7a04e02a4760e9f27206f2d
20 sg:journal.1136062
21 schema:keywords Brenke type polynomials
22 Korovkin theorem
23 Mathematica
24 Szász-Kantorovich type operators
25 Voronovkaja-type theorem
26 aid
27 approximation
28 continuity
29 convergence
30 convergence properties
31 error estimation
32 estimation
33 graph
34 help
35 modification
36 modulus
37 operators
38 order
39 order of convergence
40 paper
41 polynomials
42 properties
43 rate
44 rate of convergence
45 second order modulus
46 table
47 theorem
48 type operators
49 type polynomials
50 schema:name Approximation by modified Szász-Kantorovich type operators based on Brenke type polynomials
51 schema:pagination 337-354
52 schema:productId N531ed676ae364776a7eb5f25bb40aca2
53 N82676c57e3e24166b173e71ec1e09939
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138269469
55 https://doi.org/10.1007/s11565-021-00365-7
56 schema:sdDatePublished 2022-01-01T19:01
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne73154ad921a4133938f284905cea8f3
59 schema:url https://doi.org/10.1007/s11565-021-00365-7
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N531ed676ae364776a7eb5f25bb40aca2 schema:name dimensions_id
64 schema:value pub.1138269469
65 rdf:type schema:PropertyValue
66 N5bac18ec4de44a2aa1477996d60a49fd rdf:first N932939e8023c4815b72035969e9a10c7
67 rdf:rest rdf:nil
68 N82676c57e3e24166b173e71ec1e09939 schema:name doi
69 schema:value 10.1007/s11565-021-00365-7
70 rdf:type schema:PropertyValue
71 N87ead6ca67844ad582dd219f65866cb8 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 N932939e8023c4815b72035969e9a10c7 schema:affiliation grid-institutes:grid.8195.5
74 schema:familyName Pratap
75 schema:givenName Ram
76 rdf:type schema:Person
77 Nb5f0c2d9e7a04e02a4760e9f27206f2d schema:volumeNumber 67
78 rdf:type schema:PublicationVolume
79 Ne73154ad921a4133938f284905cea8f3 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nf1e156ee0851460da09efc1c6d10c0b8 rdf:first sg:person.013171306055.66
82 rdf:rest N5bac18ec4de44a2aa1477996d60a49fd
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 sg:journal.1136062 schema:issn 0430-3202
87 1827-1510
88 schema:name Annali dell' Università di Ferrara
89 schema:publisher Springer Nature
90 rdf:type schema:Periodical
91 sg:person.013171306055.66 schema:affiliation grid-institutes:grid.19003.3b
92 schema:familyName Kumar
93 schema:givenName Ajay
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171306055.66
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4612-4778-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015861055
97 https://doi.org/10.1007/978-1-4612-4778-4
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01982010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016669689
100 https://doi.org/10.1007/bf01982010
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00009-016-0688-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011578418
103 https://doi.org/10.1007/s00009-016-0688-6
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00025-012-0236-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007552523
106 https://doi.org/10.1007/s00025-012-0236-z
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11117-018-0553-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100405840
109 https://doi.org/10.1007/s11117-018-0553-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12190-010-0441-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020460024
112 https://doi.org/10.1007/s12190-010-0441-4
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s13370-019-00746-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122984748
115 https://doi.org/10.1007/s13370-019-00746-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1186/s13660-016-1257-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036219689
118 https://doi.org/10.1186/s13660-016-1257-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1215/20088752-3764507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064414723
121 https://doi.org/10.1215/20088752-3764507
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.19003.3b schema:alternateName Department of Mathematics, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India
124 schema:name Department of Mathematics, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India
125 rdf:type schema:Organization
126 grid-institutes:grid.8195.5 schema:alternateName Department of Mathematics, Miranda House, University of Delhi, 110007, Delhi, India
127 schema:name Department of Mathematics, Miranda House, University of Delhi, 110007, Delhi, India
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...