# Approximating multiple integrals of continuous functions by δ-uniform curves

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-04-15

AUTHORS ABSTRACT

We present a method to approximate, with controlled and arbitrarily small error, multiple intregrals over the unit cube [0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^{d}$$\end{document} by a single variable integral over [0, 1]. For this, we use the so called δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-uniform curves, which are a particular case of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-dense curves. Our main result improves and extends other existing methods on this subject. More... »

PAGES

59-71

### References to SciGraph publications

• 2011-02-01. Densifiable metric spaces in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
• 1994. Space-Filling Curves in NONE
• ### Journal

TITLE

Annali dell' Università di Ferrara

ISSUE

1

VOLUME

67

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9

DOI

http://dx.doi.org/10.1007/s11565-021-00363-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1137231797

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Universidad Nacional de Educaci\u00f3n a Distancia (UNED) Departamento de Matem\u00e1ticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Universidad Nacional de Educaci\u00f3n a Distancia (UNED) Departamento de Matem\u00e1ticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain"
],
"type": "Organization"
},
"familyName": "Garc\u00eda",
"givenName": "G.",
"id": "sg:person.010377324755.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377324755.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad de Alicante - Departamento de Matem\u00e1ticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain",
"id": "http://www.grid.ac/institutes/grid.5268.9",
"name": [
"Universidad de Alicante - Departamento de Matem\u00e1ticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain"
],
"type": "Organization"
},
"familyName": "Mora",
"givenName": "G.",
"id": "sg:person.014156420431.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156420431.13"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s13398-011-0005-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043059009",
"https://doi.org/10.1007/s13398-011-0005-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0871-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042966936",
"https://doi.org/10.1007/978-1-4612-0871-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-04-15",
"datePublishedReg": "2021-04-15",
"description": "We present a method to approximate, with controlled and arbitrarily small error, multiple intregrals over the unit cube [0,1]d\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$[0,1]^{d}$$\\end{document} by a single variable integral over [0,\u00a01]. For this, we use the so called \u03b4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\delta$$\\end{document}-uniform curves, which are a particular case of \u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha$$\\end{document}-dense curves. Our main result improves and extends other existing methods on this subject.",
"genre": "article",
"id": "sg:pub.10.1007/s11565-021-00363-9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136062",
"issn": [
"0430-3202",
"1827-1510"
],
"name": "Annali dell' Universit\u00e0 di Ferrara",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"uniform curve",
"small errors",
"method",
"cube",
"variable integral",
"curves",
"particular case",
"error",
"integrals",
"results",
"multiple integrals",
"continuous functions",
"unit cube",
"cases",
"main results",
"subjects",
"function",
"single-variable integrals",
"dense curves",
"multiple intregrals",
"intregrals"
],
"name": "Approximating multiple integrals of continuous functions by \u03b4-uniform curves",
"pagination": "59-71",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1137231797"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11565-021-00363-9"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11565-021-00363-9",
"https://app.dimensions.ai/details/publication/pub.1137231797"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T18:57",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_894.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11565-021-00363-9"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      22 PREDICATES      47 URIs      38 LITERALS      6 BLANK NODES

Subject Predicate Object
2 schema:author N815e4f99a3434e7091c29b8f443da74f
3 schema:citation sg:pub.10.1007/978-1-4612-0871-6
4 sg:pub.10.1007/s13398-011-0005-y
5 schema:datePublished 2021-04-15
6 schema:datePublishedReg 2021-04-15
7 schema:description We present a method to approximate, with controlled and arbitrarily small error, multiple intregrals over the unit cube [0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^{d}$$\end{document} by a single variable integral over [0, 1]. For this, we use the so called δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-uniform curves, which are a particular case of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-dense curves. Our main result improves and extends other existing methods on this subject.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6828178b1fd140c7b6fc23dd77efa44e
13 sg:journal.1136062
14 schema:keywords cases
15 continuous functions
16 cube
17 curves
18 dense curves
19 error
20 function
21 integrals
22 intregrals
23 main results
24 method
25 multiple integrals
26 multiple intregrals
27 particular case
28 results
29 single-variable integrals
30 small errors
31 subjects
32 uniform curve
33 unit cube
34 variable integral
35 schema:name Approximating multiple integrals of continuous functions by δ-uniform curves
36 schema:pagination 59-71
37 schema:productId Ndb934547f4764136b2b708ecd782ed96
38 Ne583a968f4a341db92db942c09bbc23c
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137231797
40 https://doi.org/10.1007/s11565-021-00363-9
41 schema:sdDatePublished 2022-01-01T18:57
43 schema:sdPublisher N470dd189518e419ea91ed90dbc5dea1d
44 schema:url https://doi.org/10.1007/s11565-021-00363-9
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N470dd189518e419ea91ed90dbc5dea1d schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
51 rdf:type schema:PublicationVolume
52 N815e4f99a3434e7091c29b8f443da74f rdf:first sg:person.010377324755.67
53 rdf:rest Nb46f4aa0126d45978de3efbcce0a0016
54 Nb46f4aa0126d45978de3efbcce0a0016 rdf:first sg:person.014156420431.13
55 rdf:rest rdf:nil
57 rdf:type schema:PublicationIssue
58 Ndb934547f4764136b2b708ecd782ed96 schema:name doi
59 schema:value 10.1007/s11565-021-00363-9
60 rdf:type schema:PropertyValue
61 Ne583a968f4a341db92db942c09bbc23c schema:name dimensions_id
62 schema:value pub.1137231797
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1136062 schema:issn 0430-3202
68 1827-1510
69 schema:name Annali dell' Università di Ferrara
70 schema:publisher Springer Nature
71 rdf:type schema:Periodical
72 sg:person.010377324755.67 schema:affiliation grid-institutes:None
73 schema:familyName García
74 schema:givenName G.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377324755.67
76 rdf:type schema:Person
77 sg:person.014156420431.13 schema:affiliation grid-institutes:grid.5268.9
78 schema:familyName Mora
79 schema:givenName G.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156420431.13
81 rdf:type schema:Person
82 sg:pub.10.1007/978-1-4612-0871-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042966936
83 https://doi.org/10.1007/978-1-4612-0871-6
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s13398-011-0005-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043059009
86 https://doi.org/10.1007/s13398-011-0005-y
87 rdf:type schema:CreativeWork
88 grid-institutes:None schema:alternateName Universidad Nacional de Educación a Distancia (UNED) Departamento de Matemáticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain
89 schema:name Universidad Nacional de Educación a Distancia (UNED) Departamento de Matemáticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain
90 rdf:type schema:Organization
91 grid-institutes:grid.5268.9 schema:alternateName Universidad de Alicante - Departamento de Matemáticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain
92 schema:name Universidad de Alicante - Departamento de Matemáticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain
93 rdf:type schema:Organization