Approximating multiple integrals of continuous functions by δ-uniform curves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04-15

AUTHORS

G. García, G. Mora

ABSTRACT

We present a method to approximate, with controlled and arbitrarily small error, multiple intregrals over the unit cube [0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^{d}$$\end{document} by a single variable integral over [0, 1]. For this, we use the so called δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-uniform curves, which are a particular case of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-dense curves. Our main result improves and extends other existing methods on this subject. More... »

PAGES

59-71

References to SciGraph publications

  • 2011-02-01. Densifiable metric spaces in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 1994. Space-Filling Curves in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9

    DOI

    http://dx.doi.org/10.1007/s11565-021-00363-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1137231797


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universidad Nacional de Educaci\u00f3n a Distancia (UNED) Departamento de Matem\u00e1ticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Universidad Nacional de Educaci\u00f3n a Distancia (UNED) Departamento de Matem\u00e1ticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda", 
            "givenName": "G.", 
            "id": "sg:person.010377324755.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377324755.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad de Alicante - Departamento de Matem\u00e1ticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5268.9", 
              "name": [
                "Universidad de Alicante - Departamento de Matem\u00e1ticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mora", 
            "givenName": "G.", 
            "id": "sg:person.014156420431.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156420431.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13398-011-0005-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043059009", 
              "https://doi.org/10.1007/s13398-011-0005-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0871-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042966936", 
              "https://doi.org/10.1007/978-1-4612-0871-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-04-15", 
        "datePublishedReg": "2021-04-15", 
        "description": "We present a method to approximate, with controlled and arbitrarily small error, multiple intregrals over the unit cube [0,1]d\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$[0,1]^{d}$$\\end{document} by a single variable integral over [0,\u00a01]. For this, we use the so called \u03b4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\delta $$\\end{document}-uniform curves, which are a particular case of \u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha $$\\end{document}-dense curves. Our main result improves and extends other existing methods on this subject.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11565-021-00363-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136062", 
            "issn": [
              "0430-3202", 
              "1827-1510"
            ], 
            "name": "Annali dell' Universit\u00e0 di Ferrara", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "uniform curve", 
          "small errors", 
          "method", 
          "cube", 
          "variable integral", 
          "curves", 
          "particular case", 
          "error", 
          "integrals", 
          "results", 
          "multiple integrals", 
          "continuous functions", 
          "unit cube", 
          "cases", 
          "main results", 
          "subjects", 
          "function", 
          "single-variable integrals", 
          "dense curves", 
          "multiple intregrals", 
          "intregrals"
        ], 
        "name": "Approximating multiple integrals of continuous functions by \u03b4-uniform curves", 
        "pagination": "59-71", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1137231797"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11565-021-00363-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11565-021-00363-9", 
          "https://app.dimensions.ai/details/publication/pub.1137231797"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_894.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11565-021-00363-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00363-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    93 TRIPLES      22 PREDICATES      47 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11565-021-00363-9 schema:about anzsrc-for:01
    2 schema:author N815e4f99a3434e7091c29b8f443da74f
    3 schema:citation sg:pub.10.1007/978-1-4612-0871-6
    4 sg:pub.10.1007/s13398-011-0005-y
    5 schema:datePublished 2021-04-15
    6 schema:datePublishedReg 2021-04-15
    7 schema:description We present a method to approximate, with controlled and arbitrarily small error, multiple intregrals over the unit cube [0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^{d}$$\end{document} by a single variable integral over [0, 1]. For this, we use the so called δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-uniform curves, which are a particular case of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-dense curves. Our main result improves and extends other existing methods on this subject.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N6828178b1fd140c7b6fc23dd77efa44e
    12 Nc03ce5b9312e4673b1ad74d073a04076
    13 sg:journal.1136062
    14 schema:keywords cases
    15 continuous functions
    16 cube
    17 curves
    18 dense curves
    19 error
    20 function
    21 integrals
    22 intregrals
    23 main results
    24 method
    25 multiple integrals
    26 multiple intregrals
    27 particular case
    28 results
    29 single-variable integrals
    30 small errors
    31 subjects
    32 uniform curve
    33 unit cube
    34 variable integral
    35 schema:name Approximating multiple integrals of continuous functions by δ-uniform curves
    36 schema:pagination 59-71
    37 schema:productId Ndb934547f4764136b2b708ecd782ed96
    38 Ne583a968f4a341db92db942c09bbc23c
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137231797
    40 https://doi.org/10.1007/s11565-021-00363-9
    41 schema:sdDatePublished 2022-01-01T18:57
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N470dd189518e419ea91ed90dbc5dea1d
    44 schema:url https://doi.org/10.1007/s11565-021-00363-9
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N470dd189518e419ea91ed90dbc5dea1d schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N6828178b1fd140c7b6fc23dd77efa44e schema:volumeNumber 67
    51 rdf:type schema:PublicationVolume
    52 N815e4f99a3434e7091c29b8f443da74f rdf:first sg:person.010377324755.67
    53 rdf:rest Nb46f4aa0126d45978de3efbcce0a0016
    54 Nb46f4aa0126d45978de3efbcce0a0016 rdf:first sg:person.014156420431.13
    55 rdf:rest rdf:nil
    56 Nc03ce5b9312e4673b1ad74d073a04076 schema:issueNumber 1
    57 rdf:type schema:PublicationIssue
    58 Ndb934547f4764136b2b708ecd782ed96 schema:name doi
    59 schema:value 10.1007/s11565-021-00363-9
    60 rdf:type schema:PropertyValue
    61 Ne583a968f4a341db92db942c09bbc23c schema:name dimensions_id
    62 schema:value pub.1137231797
    63 rdf:type schema:PropertyValue
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1136062 schema:issn 0430-3202
    68 1827-1510
    69 schema:name Annali dell' Università di Ferrara
    70 schema:publisher Springer Nature
    71 rdf:type schema:Periodical
    72 sg:person.010377324755.67 schema:affiliation grid-institutes:None
    73 schema:familyName García
    74 schema:givenName G.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377324755.67
    76 rdf:type schema:Person
    77 sg:person.014156420431.13 schema:affiliation grid-institutes:grid.5268.9
    78 schema:familyName Mora
    79 schema:givenName G.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156420431.13
    81 rdf:type schema:Person
    82 sg:pub.10.1007/978-1-4612-0871-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042966936
    83 https://doi.org/10.1007/978-1-4612-0871-6
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/s13398-011-0005-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043059009
    86 https://doi.org/10.1007/s13398-011-0005-y
    87 rdf:type schema:CreativeWork
    88 grid-institutes:None schema:alternateName Universidad Nacional de Educación a Distancia (UNED) Departamento de Matemáticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain
    89 schema:name Universidad Nacional de Educación a Distancia (UNED) Departamento de Matemáticas, CL. Candalix s/n, 03202, Elche, Alicante, Spain
    90 rdf:type schema:Organization
    91 grid-institutes:grid.5268.9 schema:alternateName Universidad de Alicante - Departamento de Matemáticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain
    92 schema:name Universidad de Alicante - Departamento de Matemáticas Facultad de Ciencias II, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante, Spain
    93 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...