Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-08

AUTHORS

Meenu Goyal, P. N. Agrawal

ABSTRACT

In this paper, we introduce the Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials. We establish some local results, a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness and also study the rate of convergence for the functions having a derivative of bounded variation for these operators. More... »

PAGES

289-302

References to SciGraph publications

  • 2015-10-12. Approximation for Jakimovski–Leviatan–Pǎltǎnea operators in ANNALI DELL' UNIVERSITÀ DI FERRARA
  • 1987. Moduli of Smoothness in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11565-017-0288-9

    DOI

    http://dx.doi.org/10.1007/s11565-017-0288-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085932640


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India", 
              "id": "http://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goyal", 
            "givenName": "Meenu", 
            "id": "sg:person.013732460631.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732460631.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India", 
              "id": "http://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agrawal", 
            "givenName": "P.  N.", 
            "id": "sg:person.07413637437.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11565-015-0234-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023998395", 
              "https://doi.org/10.1007/s11565-015-0234-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4778-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015861055", 
              "https://doi.org/10.1007/978-1-4612-4778-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-08", 
        "datePublishedReg": "2017-06-08", 
        "description": "In this paper, we introduce the B\u00e9zier variant of the Jakimovski\u2013Leviatan\u2013P\u0103lt\u0103nea operators based on Appell polynomials. We establish some local results, a direct approximation theorem by means of the Ditzian\u2013Totik modulus of smoothness and also study the rate of convergence for the functions having a derivative of bounded variation for these operators.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11565-017-0288-9", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136062", 
            "issn": [
              "0430-3202", 
              "1827-1510"
            ], 
            "name": "Annali dell' Universit\u00e0 di Ferrara", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "63"
          }
        ], 
        "keywords": [
          "B\u00e9zier variant", 
          "variants", 
          "Jakimovski-Leviatan", 
          "P\u0103lt\u0103nea operators", 
          "Appell polynomials", 
          "direct approximation theorem", 
          "rate of convergence", 
          "approximation theorem", 
          "Ditzian-Totik modulus", 
          "rate", 
          "function", 
          "local results", 
          "operators", 
          "polynomials", 
          "results", 
          "theorem", 
          "means", 
          "convergence", 
          "derivatives", 
          "smoothness", 
          "variation", 
          "modulus", 
          "paper"
        ], 
        "name": "B\u00e9zier variant of the Jakimovski\u2013Leviatan\u2013P\u0103lt\u0103nea operators based on Appell polynomials", 
        "pagination": "289-302", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085932640"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11565-017-0288-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11565-017-0288-9", 
          "https://app.dimensions.ai/details/publication/pub.1085932640"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_742.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11565-017-0288-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-017-0288-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-017-0288-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-017-0288-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-017-0288-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      49 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11565-017-0288-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N52c17deb648e4637a33097ebec0fff65
    4 schema:citation sg:pub.10.1007/978-1-4612-4778-4
    5 sg:pub.10.1007/s11565-015-0234-7
    6 schema:datePublished 2017-06-08
    7 schema:datePublishedReg 2017-06-08
    8 schema:description In this paper, we introduce the Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials. We establish some local results, a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness and also study the rate of convergence for the functions having a derivative of bounded variation for these operators.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Nae269dc828da4239a0a39537b22e85a0
    12 Ne43927c7c92b442d8209f3f3342da7c5
    13 sg:journal.1136062
    14 schema:keywords Appell polynomials
    15 Bézier variant
    16 Ditzian-Totik modulus
    17 Jakimovski-Leviatan
    18 Păltănea operators
    19 approximation theorem
    20 convergence
    21 derivatives
    22 direct approximation theorem
    23 function
    24 local results
    25 means
    26 modulus
    27 operators
    28 paper
    29 polynomials
    30 rate
    31 rate of convergence
    32 results
    33 smoothness
    34 theorem
    35 variants
    36 variation
    37 schema:name Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials
    38 schema:pagination 289-302
    39 schema:productId Nd2adb6fabaf5458e993164bbb203d4ef
    40 Ne05233e8c37a406ba1dd46d5cc3337f4
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085932640
    42 https://doi.org/10.1007/s11565-017-0288-9
    43 schema:sdDatePublished 2022-08-04T17:06
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N764e7c1098304a56a5c162a6215974ce
    46 schema:url https://doi.org/10.1007/s11565-017-0288-9
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N4fc2af076d3242488609dc976a436af8 rdf:first sg:person.07413637437.68
    51 rdf:rest rdf:nil
    52 N52c17deb648e4637a33097ebec0fff65 rdf:first sg:person.013732460631.11
    53 rdf:rest N4fc2af076d3242488609dc976a436af8
    54 N764e7c1098304a56a5c162a6215974ce schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Nae269dc828da4239a0a39537b22e85a0 schema:volumeNumber 63
    57 rdf:type schema:PublicationVolume
    58 Nd2adb6fabaf5458e993164bbb203d4ef schema:name doi
    59 schema:value 10.1007/s11565-017-0288-9
    60 rdf:type schema:PropertyValue
    61 Ne05233e8c37a406ba1dd46d5cc3337f4 schema:name dimensions_id
    62 schema:value pub.1085932640
    63 rdf:type schema:PropertyValue
    64 Ne43927c7c92b442d8209f3f3342da7c5 schema:issueNumber 2
    65 rdf:type schema:PublicationIssue
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1136062 schema:issn 0430-3202
    73 1827-1510
    74 schema:name Annali dell' Università di Ferrara
    75 schema:publisher Springer Nature
    76 rdf:type schema:Periodical
    77 sg:person.013732460631.11 schema:affiliation grid-institutes:grid.19003.3b
    78 schema:familyName Goyal
    79 schema:givenName Meenu
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732460631.11
    81 rdf:type schema:Person
    82 sg:person.07413637437.68 schema:affiliation grid-institutes:grid.19003.3b
    83 schema:familyName Agrawal
    84 schema:givenName P. N.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68
    86 rdf:type schema:Person
    87 sg:pub.10.1007/978-1-4612-4778-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015861055
    88 https://doi.org/10.1007/978-1-4612-4778-4
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/s11565-015-0234-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023998395
    91 https://doi.org/10.1007/s11565-015-0234-7
    92 rdf:type schema:CreativeWork
    93 grid-institutes:grid.19003.3b schema:alternateName Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India
    94 schema:name Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...