Real-time reversible data hiding in encrypted images based on hybrid embedding mechanism View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-01

AUTHORS

Wei Zhang, Ping Kong, Heng Yao, Yu-Chen Hu, Fang Cao

ABSTRACT

In this paper, we propose a novel real-time scheme of separable reversible data hiding in encrypted images, which consists of image encryption, data embedding, data extraction and image recovery. In image encryption phase, the content owner divides the original image into a number of non-overlapping blocks and encrypts blocks by stream cipher and permutation. During the data embedding phase, the data hider classifies encrypted blocks into smooth region and complex region according to the threshold and replaces the MSB layer of a part of pixels in blocks of smooth region with the secret data. Then, the LSB layers of other pixels are collected and compressed to generate a room for embedding the secret data again. When the receiver receives the marked image, he can divide the marked image into blocks and decrypt them by the encryption key to obtain a similar image with good quality. If the receiver only has the data hiding key, he can classify the blocks into smooth region and complex region according to the threshold and extract the embedded data by the data hiding key. If the receiver has both encryption key and data hiding key, he can extract the embedded data from the marked image and recover the original image perfectly. The proposed scheme can achieve satisfactory quality of decrypted image and high embedding rate. Experimental results demonstrate the effectiveness and computational efficiency of our scheme. More... »

PAGES

1-12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11554-018-0811-y

DOI

http://dx.doi.org/10.1007/s11554-018-0811-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105944568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wei", 
        "id": "sg:person.015170701465.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170701465.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Ping", 
        "id": "sg:person.010764601700.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010764601700.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Heng", 
        "id": "sg:person.010403056512.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403056512.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Department of Computer Science and Information Management, Providence University, 43301, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yu-Chen", 
        "id": "sg:person.012113441135.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Maritime University", 
          "id": "https://www.grid.ac/institutes/grid.412518.b", 
          "name": [
            "College of Information Engineering, Shanghai Maritime University, No. 1550 Haigang Ave, 201306, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Fang", 
        "id": "sg:person.015736223727.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736223727.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jvcir.2014.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001599544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-2759-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006445522", 
          "https://doi.org/10.1007/s11042-015-2759-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2013.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008002488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2017.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012876679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.04.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020422503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2016.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025268525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-014-1894-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041988438", 
          "https://doi.org/10.1007/s11042-014-1894-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2015.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043506395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2011.2114651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2012.2187334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061378076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2016.2585580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061379691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2012.2224052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2015.2418611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2008.2011087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2011.2176120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2015.2423656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061630544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2015.2444354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061630573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2009.2038773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2246179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2260760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2281422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2017.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084535026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.09.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091897485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipta.2016.7820991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093466735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2014.6855035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095074652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2018.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100232659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2018.2799243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100689000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2018.2799243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100689000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2018.2799243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100689000"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-01", 
    "datePublishedReg": "2018-08-01", 
    "description": "In this paper, we propose a novel real-time scheme of separable reversible data hiding in encrypted images, which consists of image encryption, data embedding, data extraction and image recovery. In image encryption phase, the content owner divides the original image into a number of non-overlapping blocks and encrypts blocks by stream cipher and permutation. During the data embedding phase, the data hider classifies encrypted blocks into smooth region and complex region according to the threshold and replaces the MSB layer of a part of pixels in blocks of smooth region with the secret data. Then, the LSB layers of other pixels are collected and compressed to generate a room for embedding the secret data again. When the receiver receives the marked image, he can divide the marked image into blocks and decrypt them by the encryption key to obtain a similar image with good quality. If the receiver only has the data hiding key, he can classify the blocks into smooth region and complex region according to the threshold and extract the embedded data by the data hiding key. If the receiver has both encryption key and data hiding key, he can extract the embedded data from the marked image and recover the original image perfectly. The proposed scheme can achieve satisfactory quality of decrypted image and high embedding rate. Experimental results demonstrate the effectiveness and computational efficiency of our scheme.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11554-018-0811-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136113", 
        "issn": [
          "1861-8200", 
          "1861-8219"
        ], 
        "name": "Journal of Real-Time Image Processing", 
        "type": "Periodical"
      }
    ], 
    "name": "Real-time reversible data hiding in encrypted images based on hybrid embedding mechanism", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1de122ce14eb7078a01c984da28b465411437431544e7fa915e548302d7f9216"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11554-018-0811-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105944568"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11554-018-0811-y", 
      "https://app.dimensions.ai/details/publication/pub.1105944568"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11554-018-0811-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0811-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0811-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0811-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0811-y'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11554-018-0811-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N88e7d582e61046959503586550571ac0
4 schema:citation sg:pub.10.1007/s11042-014-1894-5
5 sg:pub.10.1007/s11042-015-2759-2
6 https://doi.org/10.1016/j.ins.2016.04.036
7 https://doi.org/10.1016/j.ins.2017.09.060
8 https://doi.org/10.1016/j.jvcir.2013.11.001
9 https://doi.org/10.1016/j.jvcir.2014.12.007
10 https://doi.org/10.1016/j.jvcir.2015.06.009
11 https://doi.org/10.1016/j.jvcir.2017.01.004
12 https://doi.org/10.1016/j.sigpro.2016.12.029
13 https://doi.org/10.1016/j.sigpro.2017.03.033
14 https://doi.org/10.1016/j.sigpro.2018.01.011
15 https://doi.org/10.1109/icassp.2014.6855035
16 https://doi.org/10.1109/ipta.2016.7820991
17 https://doi.org/10.1109/lsp.2011.2114651
18 https://doi.org/10.1109/lsp.2012.2187334
19 https://doi.org/10.1109/lsp.2016.2585580
20 https://doi.org/10.1109/mmul.2018.112142509
21 https://doi.org/10.1109/tcsvt.2012.2224052
22 https://doi.org/10.1109/tcsvt.2015.2418611
23 https://doi.org/10.1109/tcsvt.2018.2799243
24 https://doi.org/10.1109/tifs.2008.2011087
25 https://doi.org/10.1109/tifs.2011.2176120
26 https://doi.org/10.1109/tifs.2015.2423656
27 https://doi.org/10.1109/tifs.2015.2444354
28 https://doi.org/10.1109/tip.2003.819861
29 https://doi.org/10.1109/tip.2009.2038773
30 https://doi.org/10.1109/tip.2013.2246179
31 https://doi.org/10.1109/tip.2013.2260760
32 https://doi.org/10.1109/tip.2013.2281422
33 schema:datePublished 2018-08-01
34 schema:datePublishedReg 2018-08-01
35 schema:description In this paper, we propose a novel real-time scheme of separable reversible data hiding in encrypted images, which consists of image encryption, data embedding, data extraction and image recovery. In image encryption phase, the content owner divides the original image into a number of non-overlapping blocks and encrypts blocks by stream cipher and permutation. During the data embedding phase, the data hider classifies encrypted blocks into smooth region and complex region according to the threshold and replaces the MSB layer of a part of pixels in blocks of smooth region with the secret data. Then, the LSB layers of other pixels are collected and compressed to generate a room for embedding the secret data again. When the receiver receives the marked image, he can divide the marked image into blocks and decrypt them by the encryption key to obtain a similar image with good quality. If the receiver only has the data hiding key, he can classify the blocks into smooth region and complex region according to the threshold and extract the embedded data by the data hiding key. If the receiver has both encryption key and data hiding key, he can extract the embedded data from the marked image and recover the original image perfectly. The proposed scheme can achieve satisfactory quality of decrypted image and high embedding rate. Experimental results demonstrate the effectiveness and computational efficiency of our scheme.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1136113
40 schema:name Real-time reversible data hiding in encrypted images based on hybrid embedding mechanism
41 schema:pagination 1-12
42 schema:productId N07623e04b3884c0394fe0a08f025cb53
43 Nafd0cc592a7b4331adc94141cc272142
44 Nf3b3bae1a7cf40a0952ed34c9cd2ff82
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105944568
46 https://doi.org/10.1007/s11554-018-0811-y
47 schema:sdDatePublished 2019-04-11T09:53
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N5e54bc8f98d8494d8c3d932c58e11f42
50 schema:url https://link.springer.com/10.1007%2Fs11554-018-0811-y
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0068df2b9ec34cdc94e8419322bc7fda rdf:first sg:person.010403056512.37
55 rdf:rest N088edaeb417d4add907ff512baddb195
56 N07623e04b3884c0394fe0a08f025cb53 schema:name dimensions_id
57 schema:value pub.1105944568
58 rdf:type schema:PropertyValue
59 N088edaeb417d4add907ff512baddb195 rdf:first sg:person.012113441135.19
60 rdf:rest N60f69ccc90a443e39f92126184ba8ec2
61 N5e54bc8f98d8494d8c3d932c58e11f42 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N60f69ccc90a443e39f92126184ba8ec2 rdf:first sg:person.015736223727.43
64 rdf:rest rdf:nil
65 N87ad3fe5203f40fab0462162f984993b schema:name Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China
66 rdf:type schema:Organization
67 N88e7d582e61046959503586550571ac0 rdf:first sg:person.015170701465.32
68 rdf:rest N8a9dadcfab9842cfadb138b8dd00b472
69 N8a9dadcfab9842cfadb138b8dd00b472 rdf:first sg:person.010764601700.13
70 rdf:rest N0068df2b9ec34cdc94e8419322bc7fda
71 Nafd0cc592a7b4331adc94141cc272142 schema:name readcube_id
72 schema:value 1de122ce14eb7078a01c984da28b465411437431544e7fa915e548302d7f9216
73 rdf:type schema:PropertyValue
74 Nf3b3bae1a7cf40a0952ed34c9cd2ff82 schema:name doi
75 schema:value 10.1007/s11554-018-0811-y
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1136113 schema:issn 1861-8200
84 1861-8219
85 schema:name Journal of Real-Time Image Processing
86 rdf:type schema:Periodical
87 sg:person.010403056512.37 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
88 schema:familyName Yao
89 schema:givenName Heng
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403056512.37
91 rdf:type schema:Person
92 sg:person.010764601700.13 schema:affiliation N87ad3fe5203f40fab0462162f984993b
93 schema:familyName Kong
94 schema:givenName Ping
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010764601700.13
96 rdf:type schema:Person
97 sg:person.012113441135.19 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
98 schema:familyName Hu
99 schema:givenName Yu-Chen
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19
101 rdf:type schema:Person
102 sg:person.015170701465.32 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
103 schema:familyName Zhang
104 schema:givenName Wei
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170701465.32
106 rdf:type schema:Person
107 sg:person.015736223727.43 schema:affiliation https://www.grid.ac/institutes/grid.412518.b
108 schema:familyName Cao
109 schema:givenName Fang
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736223727.43
111 rdf:type schema:Person
112 sg:pub.10.1007/s11042-014-1894-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041988438
113 https://doi.org/10.1007/s11042-014-1894-5
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11042-015-2759-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006445522
116 https://doi.org/10.1007/s11042-015-2759-2
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ins.2016.04.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020422503
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ins.2017.09.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091897485
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jvcir.2013.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008002488
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jvcir.2014.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001599544
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jvcir.2015.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043506395
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jvcir.2017.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012876679
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.sigpro.2016.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025268525
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.sigpro.2017.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084535026
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.sigpro.2018.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100232659
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/icassp.2014.6855035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095074652
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/ipta.2016.7820991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093466735
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/lsp.2011.2114651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377908
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/lsp.2012.2187334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061378076
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/lsp.2016.2585580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061379691
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/mmul.2018.112142509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100431800
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tcsvt.2012.2224052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576050
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tcsvt.2015.2418611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576527
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tcsvt.2018.2799243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100689000
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tifs.2008.2011087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629574
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tifs.2011.2176120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629953
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tifs.2015.2423656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061630544
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tifs.2015.2444354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061630573
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tip.2009.2038773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642392
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tip.2013.2246179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643491
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tip.2013.2260760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643572
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tip.2013.2281422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643715
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.267139.8 schema:alternateName University of Shanghai for Science and Technology
173 schema:name School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.412518.b schema:alternateName Shanghai Maritime University
176 schema:name College of Information Engineering, Shanghai Maritime University, No. 1550 Haigang Ave, 201306, Shanghai, China
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
179 schema:name Department of Computer Science and Information Management, Providence University, 43301, Taichung, Taiwan
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...