A suite of parallel algorithms for efficient band selection from hyperspectral images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Alessandro Fontanella, Elisa Marenzi, Emanuele Torti, Giovanni Danese, Antonio Plaza, Francesco Leporati

ABSTRACT

The analysis of hyperspectral images is usually very heavy from the computational point-of-view, due to their high dimensionality. In order to avoid this problem, band selection (BS) has been widely used to reduce the dimensionality before the analysis. The aim is to extract a subset of the original bands of the hyperspectral image, preserving most of the information contained in the original data. The BS technique can be performed by prioritizing the bands on the basis of a score, assigned by specific criteria; in this case, BS turns out in the so-called band prioritization (BP). This paper focuses on BP algorithms based on the following parameters: signal-to-noise ratio, kurtosis, entropy, information divergence, variance and linearly constrained minimum variance. In particular, an optimized C serial version has been developed for each algorithm from which two parallel versions have been derived using OpenMP and NVIDIA’s compute unified device architecture. The former is designed for a multi-core CPU, while the latter is designed for a many-core graphics processing unit. For each version of these algorithms, several tests have been performed on a large database containing both synthetic and real hyperspectral images. In this way, scientists can integrate the proposed suite of efficient BP algorithms into existing frameworks, choosing the most suitable technique for their specific applications. More... »

PAGES

537-553

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11554-018-0765-0

DOI

http://dx.doi.org/10.1007/s11554-018-0765-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101672934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontanella", 
        "givenName": "Alessandro", 
        "id": "sg:person.015730622567.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730622567.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marenzi", 
        "givenName": "Elisa", 
        "id": "sg:person.012762451505.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762451505.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torti", 
        "givenName": "Emanuele", 
        "id": "sg:person.011335465247.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335465247.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danese", 
        "givenName": "Giovanni", 
        "id": "sg:person.015364006713.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364006713.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Extremadura", 
          "id": "https://www.grid.ac/institutes/grid.8393.1", 
          "name": [
            "Department of Technology of Computers and Communications, Escuela Politecnica de Caceres, University of Extremadura, C\u00e1ceres, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plaza", 
        "givenName": "Antonio", 
        "id": "sg:person.011511514573.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511514573.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leporati", 
        "givenName": "Francesco", 
        "id": "sg:person.010121030771.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121030771.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/1.jrs.6.061504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000398052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-012-0292-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001162355", 
          "https://doi.org/10.1007/s11554-012-0292-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2068811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010589970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.681658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021215197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(98)00064-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035457258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.158622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037685889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-012-0276-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044891414", 
          "https://doi.org/10.1007/s11554-012-0276-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-016-9580-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052164965", 
          "https://doi.org/10.1007/s10596-016-9580-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.803411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2011.2120598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061332544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2014.2304832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2014.2320299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2015.2485399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2012.2200452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2006.864389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2008.918089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2015.2450759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2015.2461653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2017.2707541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086006730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-017-0703-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090368273", 
          "https://doi.org/10.1007/s11554-017-0703-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-017-0703-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090368273", 
          "https://doi.org/10.1007/s11554-017-0703-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpads.2011.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094677189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2009.5417728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095756603"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "The analysis of hyperspectral images is usually very heavy from the computational point-of-view, due to their high dimensionality. In order to avoid this problem, band selection (BS) has been widely used to reduce the dimensionality before the analysis. The aim is to extract a subset of the original bands of the hyperspectral image, preserving most of the information contained in the original data. The BS technique can be performed by prioritizing the bands on the basis of a score, assigned by specific criteria; in this case, BS turns out in the so-called band prioritization (BP). This paper focuses on BP algorithms based on the following parameters: signal-to-noise ratio, kurtosis, entropy, information divergence, variance and linearly constrained minimum variance. In particular, an optimized C serial version has been developed for each algorithm from which two parallel versions have been derived using OpenMP and NVIDIA\u2019s compute unified device architecture. The former is designed for a multi-core CPU, while the latter is designed for a many-core graphics processing unit. For each version of these algorithms, several tests have been performed on a large database containing both synthetic and real hyperspectral images. In this way, scientists can integrate the proposed suite of efficient BP algorithms into existing frameworks, choosing the most suitable technique for their specific applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11554-018-0765-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136113", 
        "issn": [
          "1861-8200", 
          "1861-8219"
        ], 
        "name": "Journal of Real-Time Image Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "A suite of parallel algorithms for efficient band selection from hyperspectral images", 
    "pagination": "537-553", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f68e1da9e5a42053cb5a00ef51db22c9a02838730d78df2e197b31f05490b6c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11554-018-0765-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101672934"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11554-018-0765-0", 
      "https://app.dimensions.ai/details/publication/pub.1101672934"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70032_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11554-018-0765-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0765-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0765-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0765-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11554-018-0765-0'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11554-018-0765-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfb02d31c253340d48bf45ecb25884e53
4 schema:citation sg:pub.10.1007/s10596-016-9580-5
5 sg:pub.10.1007/s11554-012-0276-3
6 sg:pub.10.1007/s11554-012-0292-3
7 sg:pub.10.1007/s11554-017-0703-6
8 https://doi.org/10.1016/s0034-4257(98)00064-9
9 https://doi.org/10.1109/36.803411
10 https://doi.org/10.1109/icpads.2011.157
11 https://doi.org/10.1109/igarss.2009.5417728
12 https://doi.org/10.1109/jstars.2011.2120598
13 https://doi.org/10.1109/jstars.2014.2304832
14 https://doi.org/10.1109/jstars.2014.2320299
15 https://doi.org/10.1109/jstars.2015.2485399
16 https://doi.org/10.1109/jstars.2017.2707541
17 https://doi.org/10.1109/lgrs.2012.2200452
18 https://doi.org/10.1109/tgrs.2006.864389
19 https://doi.org/10.1109/tgrs.2008.918089
20 https://doi.org/10.1109/tgrs.2015.2450759
21 https://doi.org/10.1109/tgrs.2015.2461653
22 https://doi.org/10.1117/1.jrs.6.061504
23 https://doi.org/10.1117/12.158622
24 https://doi.org/10.1117/12.2068811
25 https://doi.org/10.1117/12.681658
26 schema:datePublished 2018-10
27 schema:datePublishedReg 2018-10-01
28 schema:description The analysis of hyperspectral images is usually very heavy from the computational point-of-view, due to their high dimensionality. In order to avoid this problem, band selection (BS) has been widely used to reduce the dimensionality before the analysis. The aim is to extract a subset of the original bands of the hyperspectral image, preserving most of the information contained in the original data. The BS technique can be performed by prioritizing the bands on the basis of a score, assigned by specific criteria; in this case, BS turns out in the so-called band prioritization (BP). This paper focuses on BP algorithms based on the following parameters: signal-to-noise ratio, kurtosis, entropy, information divergence, variance and linearly constrained minimum variance. In particular, an optimized C serial version has been developed for each algorithm from which two parallel versions have been derived using OpenMP and NVIDIA’s compute unified device architecture. The former is designed for a multi-core CPU, while the latter is designed for a many-core graphics processing unit. For each version of these algorithms, several tests have been performed on a large database containing both synthetic and real hyperspectral images. In this way, scientists can integrate the proposed suite of efficient BP algorithms into existing frameworks, choosing the most suitable technique for their specific applications.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Nce795545c6e84fb48dfa3dcb5cc56c9c
33 Nf2a17a9eaf324bacaa4226c205c6e245
34 sg:journal.1136113
35 schema:name A suite of parallel algorithms for efficient band selection from hyperspectral images
36 schema:pagination 537-553
37 schema:productId N8502e112d01849c99171a9350f9bcfe6
38 Naa2857f062bc4fc6a6d667cf990c13ef
39 Nc616904decd54b38a7f9b3d19f700c1a
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101672934
41 https://doi.org/10.1007/s11554-018-0765-0
42 schema:sdDatePublished 2019-04-11T12:37
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nb8b952e9ca2a482bbdcd3eb5743db313
45 schema:url https://link.springer.com/10.1007%2Fs11554-018-0765-0
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0eaa994f69f8441a886d176bb04db6a7 rdf:first sg:person.011335465247.87
50 rdf:rest Nf83e2bc414cd48378965524bff323f78
51 N5bc70add1cd94ea28e00c3350447b8cd rdf:first sg:person.012762451505.86
52 rdf:rest N0eaa994f69f8441a886d176bb04db6a7
53 N6d337b778c8b4dd0b65deec792ec9653 rdf:first sg:person.010121030771.38
54 rdf:rest rdf:nil
55 N8502e112d01849c99171a9350f9bcfe6 schema:name dimensions_id
56 schema:value pub.1101672934
57 rdf:type schema:PropertyValue
58 Naa2857f062bc4fc6a6d667cf990c13ef schema:name readcube_id
59 schema:value 2f68e1da9e5a42053cb5a00ef51db22c9a02838730d78df2e197b31f05490b6c
60 rdf:type schema:PropertyValue
61 Nb8b952e9ca2a482bbdcd3eb5743db313 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nc616904decd54b38a7f9b3d19f700c1a schema:name doi
64 schema:value 10.1007/s11554-018-0765-0
65 rdf:type schema:PropertyValue
66 Nce795545c6e84fb48dfa3dcb5cc56c9c schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 Nf2a17a9eaf324bacaa4226c205c6e245 schema:volumeNumber 15
69 rdf:type schema:PublicationVolume
70 Nf83e2bc414cd48378965524bff323f78 rdf:first sg:person.015364006713.27
71 rdf:rest Nfbaf3755ca274e369da5c2b20540d320
72 Nfb02d31c253340d48bf45ecb25884e53 rdf:first sg:person.015730622567.47
73 rdf:rest N5bc70add1cd94ea28e00c3350447b8cd
74 Nfbaf3755ca274e369da5c2b20540d320 rdf:first sg:person.011511514573.62
75 rdf:rest N6d337b778c8b4dd0b65deec792ec9653
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:journal.1136113 schema:issn 1861-8200
83 1861-8219
84 schema:name Journal of Real-Time Image Processing
85 rdf:type schema:Periodical
86 sg:person.010121030771.38 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
87 schema:familyName Leporati
88 schema:givenName Francesco
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121030771.38
90 rdf:type schema:Person
91 sg:person.011335465247.87 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
92 schema:familyName Torti
93 schema:givenName Emanuele
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335465247.87
95 rdf:type schema:Person
96 sg:person.011511514573.62 schema:affiliation https://www.grid.ac/institutes/grid.8393.1
97 schema:familyName Plaza
98 schema:givenName Antonio
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511514573.62
100 rdf:type schema:Person
101 sg:person.012762451505.86 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
102 schema:familyName Marenzi
103 schema:givenName Elisa
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762451505.86
105 rdf:type schema:Person
106 sg:person.015364006713.27 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
107 schema:familyName Danese
108 schema:givenName Giovanni
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364006713.27
110 rdf:type schema:Person
111 sg:person.015730622567.47 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
112 schema:familyName Fontanella
113 schema:givenName Alessandro
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730622567.47
115 rdf:type schema:Person
116 sg:pub.10.1007/s10596-016-9580-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052164965
117 https://doi.org/10.1007/s10596-016-9580-5
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11554-012-0276-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044891414
120 https://doi.org/10.1007/s11554-012-0276-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11554-012-0292-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001162355
123 https://doi.org/10.1007/s11554-012-0292-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11554-017-0703-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090368273
126 https://doi.org/10.1007/s11554-017-0703-6
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0034-4257(98)00064-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035457258
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/36.803411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162230
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/icpads.2011.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094677189
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/igarss.2009.5417728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095756603
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/jstars.2011.2120598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061332544
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/jstars.2014.2304832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333200
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/jstars.2014.2320299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333288
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/jstars.2015.2485399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333961
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/jstars.2017.2707541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086006730
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/lgrs.2012.2200452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359577
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tgrs.2006.864389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609724
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tgrs.2008.918089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610847
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tgrs.2015.2450759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613960
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tgrs.2015.2461653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614003
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1117/1.jrs.6.061504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000398052
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1117/12.158622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037685889
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1117/12.2068811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010589970
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1117/12.681658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021215197
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.8393.1 schema:alternateName University of Extremadura
165 schema:name Department of Technology of Computers and Communications, Escuela Politecnica de Caceres, University of Extremadura, Cáceres, Spain
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.8982.b schema:alternateName University of Pavia
168 schema:name Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...