Parallel real-time virtual dimensionality estimation for hyperspectral images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Emanuele Torti, Alessandro Fontanella, Antonio Plaza

ABSTRACT

One of the most important tasks in hyperspectral imaging is the estimation of the number of endmembers in a scene, where the endmembers are the most spectrally pure components. The high dimensionality of hyperspectral data makes this calculation computationally expensive. In this paper, we present several new real-time implementations of the well-known Harsanyi–Farrand–Chang method for virtual dimensionality estimation. The proposed solutions exploit multi-core processors and graphic processing units for achieving real-time performance of this algorithm, together with better performance than other works in the literature. Our experimental results are obtained using both synthetic and real images. The obtained processing times show that the proposed implementations outperform other hardware-based solutions. More... »

PAGES

753-761

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11554-017-0703-6

DOI

http://dx.doi.org/10.1007/s11554-017-0703-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090368273


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torti", 
        "givenName": "Emanuele", 
        "id": "sg:person.011335465247.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335465247.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontanella", 
        "givenName": "Alessandro", 
        "id": "sg:person.015730622567.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730622567.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Extremadura", 
          "id": "https://www.grid.ac/institutes/grid.8393.1", 
          "name": [
            "Department of Technology of Computers and Communications, Escuela Politecnica de Caceres, University of Extremadura, Caceres, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plaza", 
        "givenName": "Antonio", 
        "id": "sg:person.011511514573.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511514573.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11554-014-0482-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003812235", 
          "https://doi.org/10.1007/s11554-014-0482-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-014-0482-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003812235", 
          "https://doi.org/10.1007/s11554-014-0482-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9170-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004126947", 
          "https://doi.org/10.1007/978-1-4419-9170-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9170-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004126947", 
          "https://doi.org/10.1007/978-1-4419-9170-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-012-0269-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027698370", 
          "https://doi.org/10.1007/s11554-012-0269-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-012-0276-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044891414", 
          "https://doi.org/10.1007/s11554-012-0276-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/79.974727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2012.2231391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2014.2304832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2015.2485399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2016.2574876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2006.871749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2012.2200452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2006.864389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2008.918089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2008.4518503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095475861"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "One of the most important tasks in hyperspectral imaging is the estimation of the number of endmembers in a scene, where the endmembers are the most spectrally pure components. The high dimensionality of hyperspectral data makes this calculation computationally expensive. In this paper, we present several new real-time implementations of the well-known Harsanyi\u2013Farrand\u2013Chang method for virtual dimensionality estimation. The proposed solutions exploit multi-core processors and graphic processing units for achieving real-time performance of this algorithm, together with better performance than other works in the literature. Our experimental results are obtained using both synthetic and real images. The obtained processing times show that the proposed implementations outperform other hardware-based solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11554-017-0703-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136113", 
        "issn": [
          "1861-8200", 
          "1861-8219"
        ], 
        "name": "Journal of Real-Time Image Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Parallel real-time virtual dimensionality estimation for hyperspectral images", 
    "pagination": "753-761", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84c0b61dc5ea2b86fa79f7a00b310d25415cf29e637eb7fb45d8388d64e8326a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11554-017-0703-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090368273"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11554-017-0703-6", 
      "https://app.dimensions.ai/details/publication/pub.1090368273"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11554-017-0703-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0703-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0703-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0703-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0703-6'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11554-017-0703-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb7a013bc15844eb7b181dcd40a4b7077
4 schema:citation sg:pub.10.1007/978-1-4419-9170-6
5 sg:pub.10.1007/s11554-012-0269-2
6 sg:pub.10.1007/s11554-012-0276-3
7 sg:pub.10.1007/s11554-014-0482-2
8 https://doi.org/10.1109/79.974727
9 https://doi.org/10.1109/icassp.2008.4518503
10 https://doi.org/10.1109/jproc.2012.2231391
11 https://doi.org/10.1109/jstars.2014.2304832
12 https://doi.org/10.1109/jstars.2015.2485399
13 https://doi.org/10.1109/jstars.2016.2574876
14 https://doi.org/10.1109/lgrs.2006.871749
15 https://doi.org/10.1109/lgrs.2012.2200452
16 https://doi.org/10.1109/tgrs.2006.864389
17 https://doi.org/10.1109/tgrs.2008.918089
18 schema:datePublished 2018-04
19 schema:datePublishedReg 2018-04-01
20 schema:description One of the most important tasks in hyperspectral imaging is the estimation of the number of endmembers in a scene, where the endmembers are the most spectrally pure components. The high dimensionality of hyperspectral data makes this calculation computationally expensive. In this paper, we present several new real-time implementations of the well-known Harsanyi–Farrand–Chang method for virtual dimensionality estimation. The proposed solutions exploit multi-core processors and graphic processing units for achieving real-time performance of this algorithm, together with better performance than other works in the literature. Our experimental results are obtained using both synthetic and real images. The obtained processing times show that the proposed implementations outperform other hardware-based solutions.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N04db1916e14d4d5fbf000787cc5de0de
25 N3311bb4775c141b3b4fac0a395c684e0
26 sg:journal.1136113
27 schema:name Parallel real-time virtual dimensionality estimation for hyperspectral images
28 schema:pagination 753-761
29 schema:productId N3431304f64934f2ab114ed80d57819a2
30 N944801240ea7481396461aad9a2be645
31 Nea5f7f128cf7466e8db0005fae4439f1
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090368273
33 https://doi.org/10.1007/s11554-017-0703-6
34 schema:sdDatePublished 2019-04-11T12:39
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N2d93dc4865b647158077939fc942e60a
37 schema:url https://link.springer.com/10.1007%2Fs11554-017-0703-6
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N04db1916e14d4d5fbf000787cc5de0de schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 N059b5309c605407bae7d71cbbaad2748 rdf:first sg:person.011511514573.62
44 rdf:rest rdf:nil
45 N2d93dc4865b647158077939fc942e60a schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N3311bb4775c141b3b4fac0a395c684e0 schema:volumeNumber 14
48 rdf:type schema:PublicationVolume
49 N3431304f64934f2ab114ed80d57819a2 schema:name dimensions_id
50 schema:value pub.1090368273
51 rdf:type schema:PropertyValue
52 N944801240ea7481396461aad9a2be645 schema:name doi
53 schema:value 10.1007/s11554-017-0703-6
54 rdf:type schema:PropertyValue
55 Nb7a013bc15844eb7b181dcd40a4b7077 rdf:first sg:person.011335465247.87
56 rdf:rest Neab30e9bccce4ba4bcb5b4330cf7ef07
57 Nea5f7f128cf7466e8db0005fae4439f1 schema:name readcube_id
58 schema:value 84c0b61dc5ea2b86fa79f7a00b310d25415cf29e637eb7fb45d8388d64e8326a
59 rdf:type schema:PropertyValue
60 Neab30e9bccce4ba4bcb5b4330cf7ef07 rdf:first sg:person.015730622567.47
61 rdf:rest N059b5309c605407bae7d71cbbaad2748
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:journal.1136113 schema:issn 1861-8200
69 1861-8219
70 schema:name Journal of Real-Time Image Processing
71 rdf:type schema:Periodical
72 sg:person.011335465247.87 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
73 schema:familyName Torti
74 schema:givenName Emanuele
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335465247.87
76 rdf:type schema:Person
77 sg:person.011511514573.62 schema:affiliation https://www.grid.ac/institutes/grid.8393.1
78 schema:familyName Plaza
79 schema:givenName Antonio
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511514573.62
81 rdf:type schema:Person
82 sg:person.015730622567.47 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
83 schema:familyName Fontanella
84 schema:givenName Alessandro
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730622567.47
86 rdf:type schema:Person
87 sg:pub.10.1007/978-1-4419-9170-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004126947
88 https://doi.org/10.1007/978-1-4419-9170-6
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11554-012-0269-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027698370
91 https://doi.org/10.1007/s11554-012-0269-2
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11554-012-0276-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044891414
94 https://doi.org/10.1007/s11554-012-0276-3
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s11554-014-0482-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003812235
97 https://doi.org/10.1007/s11554-014-0482-2
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/79.974727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232100
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/icassp.2008.4518503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095475861
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/jproc.2012.2231391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297729
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/jstars.2014.2304832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333200
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/jstars.2015.2485399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333961
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/jstars.2016.2574876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334310
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/lgrs.2006.871749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358338
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/lgrs.2012.2200452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359577
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tgrs.2006.864389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609724
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tgrs.2008.918089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610847
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.8393.1 schema:alternateName University of Extremadura
120 schema:name Department of Technology of Computers and Communications, Escuela Politecnica de Caceres, University of Extremadura, Caceres, Spain
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.8982.b schema:alternateName University of Pavia
123 schema:name Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...