Visual secret sharing scheme for (k, n) threshold based on QR code with multiple decryptions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-09

AUTHORS

Song Wan, Yuliang Lu, Xuehu Yan, Yongjie Wang, Chao Chang

ABSTRACT

In this paper, a novel visual secret sharing (VSS) scheme based on QR code (VSSQR) with (k, n) threshold is investigated. Our VSSQR exploits the error correction mechanism in the QR code structure, to generate the bits corresponding to shares (shadow images) by VSS from a secret bit in the processing of encoding QR. Each output share is a valid QR code that can be scanned and decoded utilizing a QR code reader, which may reduce the likelihood of attracting the attention of potential attackers. Due to different application scenarios, two different recovered ways of the secret image are given. The proposed VSS scheme based on QR code can visually reveal secret image with the abilities of stacking and XOR decryptions as well as scan every shadow image, i.e., a QR code, by a QR code reader. The secret image could be revealed by human visual system without any computation based on stacking when no lightweight computation device. On the other hand, if the lightweight computation device is available, the secret image can be revealed with better visual quality based on XOR operation and could be lossless revealed when sufficient shares are collected. In addition, it can assist alignment for VSS recovery. The experiment results show the effectiveness of our scheme. More... »

PAGES

25-40

References to SciGraph publications

  • 2017-12-22. High Capacity Embedding Methods of QR Code Error Correction in WIRELESS INTERNET
  • 1995. Visual cryptography in ADVANCES IN CRYPTOLOGY — EUROCRYPT'94
  • 2015-05-28. Random Girds-Based Threshold Visual Secret Sharing with Improved Contrast by Boolean Operations in DIGITAL-FORENSICS AND WATERMARKING
  • 2015-10-27. An enhanced threshold visual secret sharing based on random grids in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2015-08-02. Threshold progressive visual cryptography construction with unexpanded shares in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2012. Authenticating Visual Cryptography Shares Using 2D Barcodes in DIGITAL FORENSICS AND WATERMARKING
  • 2011. Secret-Sharing Schemes: A Survey in CODING AND CRYPTOLOGY
  • 2013-12-24. Visual secret sharing based on random grids with abilities of AND and XOR lossless recovery in MULTIMEDIA TOOLS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11554-017-0678-3

    DOI

    http://dx.doi.org/10.1007/s11554-017-0678-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084031870


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wan", 
            "givenName": "Song", 
            "id": "sg:person.012077574322.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yuliang", 
            "id": "sg:person.015112370271.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Xuehu", 
            "id": "sg:person.010467364517.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yongjie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Chao", 
            "id": "sg:person.07606761502.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606761502.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11042-015-2779-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052643056", 
              "https://doi.org/10.1007/s11042-015-2779-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-015-0540-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022432477", 
              "https://doi.org/10.1007/s11554-015-0540-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-19321-2_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033037532", 
              "https://doi.org/10.1007/978-3-319-19321-2_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-20901-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035725690", 
              "https://doi.org/10.1007/978-3-642-20901-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32205-1_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016435694", 
              "https://doi.org/10.1007/978-3-642-32205-1_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-013-1784-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021413130", 
              "https://doi.org/10.1007/s11042-013-1784-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0053419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008839066", 
              "https://doi.org/10.1007/bfb0053419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-72998-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099905939", 
              "https://doi.org/10.1007/978-3-319-72998-5_8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-09", 
        "datePublishedReg": "2017-03-09", 
        "description": "In this paper, a novel visual secret sharing (VSS) scheme based on QR code (VSSQR) with (k,\u00a0n) threshold is investigated. Our VSSQR exploits the error correction mechanism in the QR code structure, to generate the bits corresponding to shares (shadow images) by VSS from a secret bit in the processing of encoding QR. Each output share is a valid QR code that can be scanned and decoded utilizing a QR code reader, which may reduce the likelihood of attracting the attention of potential attackers. Due to different application scenarios, two different recovered ways of the secret image are given. The proposed VSS scheme based on QR code can visually reveal secret image with the abilities of stacking and XOR decryptions as well as scan every shadow image, i.e., a QR code, by a QR code reader. The secret image could be revealed by human visual system without any computation based on stacking when no lightweight computation device. On the other hand, if the lightweight computation device is available, the secret image can be revealed with better visual quality based on XOR operation and could be lossless revealed when sufficient shares are collected. In addition, it can assist alignment for VSS recovery. The experiment results show the effectiveness of our scheme.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11554-017-0678-3", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8304044", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136113", 
            "issn": [
              "1861-8200", 
              "1861-8219"
            ], 
            "name": "Journal of Real-Time Image Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "visual secret sharing scheme", 
          "QR code reader", 
          "secret image", 
          "secret sharing scheme", 
          "QR code", 
          "sharing scheme", 
          "novel visual secret sharing scheme", 
          "code reader", 
          "computation devices", 
          "QR code structure", 
          "valid QR code", 
          "better visual quality", 
          "different application scenarios", 
          "VSS recovery", 
          "human visual system", 
          "XOR decryptions", 
          "multiple decryptions", 
          "potential attackers", 
          "VSS scheme", 
          "application scenarios", 
          "XOR operation", 
          "secret bits", 
          "code structure", 
          "visual quality", 
          "shadow images", 
          "decryption", 
          "experiment results", 
          "images", 
          "code", 
          "error correction mechanism", 
          "scheme", 
          "correction mechanism", 
          "sufficient share", 
          "visual system", 
          "bits", 
          "attacker", 
          "lossless", 
          "computation", 
          "devices", 
          "scenarios", 
          "output shares", 
          "processing", 
          "QR", 
          "effectiveness", 
          "operation", 
          "system", 
          "readers", 
          "alignment", 
          "share", 
          "way", 
          "quality", 
          "threshold", 
          "hand", 
          "attention", 
          "results", 
          "ability", 
          "VSS", 
          "structure", 
          "scans", 
          "addition", 
          "mechanism", 
          "likelihood", 
          "recovery", 
          "paper"
        ], 
        "name": "Visual secret sharing scheme for (k, n) threshold based on QR code with multiple decryptions", 
        "pagination": "25-40", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084031870"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11554-017-0678-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11554-017-0678-3", 
          "https://app.dimensions.ai/details/publication/pub.1084031870"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_720.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11554-017-0678-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0678-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0678-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0678-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11554-017-0678-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      98 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11554-017-0678-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:17
    4 anzsrc-for:1701
    5 schema:author N038c51edc1d84bdb8cc8a1a7c3f5a3e1
    6 schema:citation sg:pub.10.1007/978-3-319-19321-2_24
    7 sg:pub.10.1007/978-3-319-72998-5_8
    8 sg:pub.10.1007/978-3-642-20901-7_2
    9 sg:pub.10.1007/978-3-642-32205-1_17
    10 sg:pub.10.1007/bfb0053419
    11 sg:pub.10.1007/s11042-013-1784-2
    12 sg:pub.10.1007/s11042-015-2779-y
    13 sg:pub.10.1007/s11554-015-0540-4
    14 schema:datePublished 2017-03-09
    15 schema:datePublishedReg 2017-03-09
    16 schema:description In this paper, a novel visual secret sharing (VSS) scheme based on QR code (VSSQR) with (k, n) threshold is investigated. Our VSSQR exploits the error correction mechanism in the QR code structure, to generate the bits corresponding to shares (shadow images) by VSS from a secret bit in the processing of encoding QR. Each output share is a valid QR code that can be scanned and decoded utilizing a QR code reader, which may reduce the likelihood of attracting the attention of potential attackers. Due to different application scenarios, two different recovered ways of the secret image are given. The proposed VSS scheme based on QR code can visually reveal secret image with the abilities of stacking and XOR decryptions as well as scan every shadow image, i.e., a QR code, by a QR code reader. The secret image could be revealed by human visual system without any computation based on stacking when no lightweight computation device. On the other hand, if the lightweight computation device is available, the secret image can be revealed with better visual quality based on XOR operation and could be lossless revealed when sufficient shares are collected. In addition, it can assist alignment for VSS recovery. The experiment results show the effectiveness of our scheme.
    17 schema:genre article
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N1b2b9e0fdcc44bd9b0ba6c5075051955
    20 N77e386f5b33b49c485f436c2f384c28b
    21 sg:journal.1136113
    22 schema:keywords QR
    23 QR code
    24 QR code reader
    25 QR code structure
    26 VSS
    27 VSS recovery
    28 VSS scheme
    29 XOR decryptions
    30 XOR operation
    31 ability
    32 addition
    33 alignment
    34 application scenarios
    35 attacker
    36 attention
    37 better visual quality
    38 bits
    39 code
    40 code reader
    41 code structure
    42 computation
    43 computation devices
    44 correction mechanism
    45 decryption
    46 devices
    47 different application scenarios
    48 effectiveness
    49 error correction mechanism
    50 experiment results
    51 hand
    52 human visual system
    53 images
    54 likelihood
    55 lossless
    56 mechanism
    57 multiple decryptions
    58 novel visual secret sharing scheme
    59 operation
    60 output shares
    61 paper
    62 potential attackers
    63 processing
    64 quality
    65 readers
    66 recovery
    67 results
    68 scans
    69 scenarios
    70 scheme
    71 secret bits
    72 secret image
    73 secret sharing scheme
    74 shadow images
    75 share
    76 sharing scheme
    77 structure
    78 sufficient share
    79 system
    80 threshold
    81 valid QR code
    82 visual quality
    83 visual secret sharing scheme
    84 visual system
    85 way
    86 schema:name Visual secret sharing scheme for (k, n) threshold based on QR code with multiple decryptions
    87 schema:pagination 25-40
    88 schema:productId N0048467059d6411e87d653a3e9e14338
    89 N0bd4f8a4d7a64dfdb52a5bd1af357d52
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031870
    91 https://doi.org/10.1007/s11554-017-0678-3
    92 schema:sdDatePublished 2022-12-01T06:35
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N0671715cf59842d59f104812d64f0bc2
    95 schema:url https://doi.org/10.1007/s11554-017-0678-3
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N0048467059d6411e87d653a3e9e14338 schema:name dimensions_id
    100 schema:value pub.1084031870
    101 rdf:type schema:PropertyValue
    102 N038c51edc1d84bdb8cc8a1a7c3f5a3e1 rdf:first sg:person.012077574322.79
    103 rdf:rest N985dcd0a925445ee83a3311d99c05c93
    104 N0671715cf59842d59f104812d64f0bc2 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N0bd4f8a4d7a64dfdb52a5bd1af357d52 schema:name doi
    107 schema:value 10.1007/s11554-017-0678-3
    108 rdf:type schema:PropertyValue
    109 N1b2b9e0fdcc44bd9b0ba6c5075051955 schema:issueNumber 1
    110 rdf:type schema:PublicationIssue
    111 N77746e5b8d194922a66067d7d0b8d2c2 rdf:first Ncf03b2353e714cc49fe21ae2068d510c
    112 rdf:rest Nd0ca350aa992477b939b29003ff57c62
    113 N77e386f5b33b49c485f436c2f384c28b schema:volumeNumber 14
    114 rdf:type schema:PublicationVolume
    115 N985dcd0a925445ee83a3311d99c05c93 rdf:first sg:person.015112370271.93
    116 rdf:rest Nd5478db52c0e4734a10caab0c06a5b6b
    117 Ncf03b2353e714cc49fe21ae2068d510c schema:affiliation grid-institutes:None
    118 schema:familyName Wang
    119 schema:givenName Yongjie
    120 rdf:type schema:Person
    121 Nd0ca350aa992477b939b29003ff57c62 rdf:first sg:person.07606761502.51
    122 rdf:rest rdf:nil
    123 Nd5478db52c0e4734a10caab0c06a5b6b rdf:first sg:person.010467364517.31
    124 rdf:rest N77746e5b8d194922a66067d7d0b8d2c2
    125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Information and Computing Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Artificial Intelligence and Image Processing
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Psychology and Cognitive Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Psychology
    136 rdf:type schema:DefinedTerm
    137 sg:grant.8304044 http://pending.schema.org/fundedItem sg:pub.10.1007/s11554-017-0678-3
    138 rdf:type schema:MonetaryGrant
    139 sg:journal.1136113 schema:issn 1861-8200
    140 1861-8219
    141 schema:name Journal of Real-Time Image Processing
    142 schema:publisher Springer Nature
    143 rdf:type schema:Periodical
    144 sg:person.010467364517.31 schema:affiliation grid-institutes:None
    145 schema:familyName Yan
    146 schema:givenName Xuehu
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
    148 rdf:type schema:Person
    149 sg:person.012077574322.79 schema:affiliation grid-institutes:None
    150 schema:familyName Wan
    151 schema:givenName Song
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79
    153 rdf:type schema:Person
    154 sg:person.015112370271.93 schema:affiliation grid-institutes:None
    155 schema:familyName Lu
    156 schema:givenName Yuliang
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
    158 rdf:type schema:Person
    159 sg:person.07606761502.51 schema:affiliation grid-institutes:None
    160 schema:familyName Chang
    161 schema:givenName Chao
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606761502.51
    163 rdf:type schema:Person
    164 sg:pub.10.1007/978-3-319-19321-2_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033037532
    165 https://doi.org/10.1007/978-3-319-19321-2_24
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-3-319-72998-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099905939
    168 https://doi.org/10.1007/978-3-319-72998-5_8
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/978-3-642-20901-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035725690
    171 https://doi.org/10.1007/978-3-642-20901-7_2
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/978-3-642-32205-1_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016435694
    174 https://doi.org/10.1007/978-3-642-32205-1_17
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/bfb0053419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839066
    177 https://doi.org/10.1007/bfb0053419
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s11042-013-1784-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021413130
    180 https://doi.org/10.1007/s11042-013-1784-2
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s11042-015-2779-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052643056
    183 https://doi.org/10.1007/s11042-015-2779-y
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s11554-015-0540-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
    186 https://doi.org/10.1007/s11554-015-0540-4
    187 rdf:type schema:CreativeWork
    188 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
    189 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...