Participants increasing for threshold random grids-based visual secret sharing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09-26

AUTHORS

Xuehu Yan, Yuliang Lu

ABSTRACT

In (k, n) visual secret sharing (VSS), a secret image is generated into n shadow images printed onto transparencies and distributed to n associated participants. The secret image can be recovered by stacking any k or more shadow images and human visual system without cryptographic computation. The previous VSS schemes neglected participants increasing. However, in some applications, some new shadow images need to be generated because some new participants join the secret sharing. In this paper, we consider the new participants increasing issue as well as propose a participants increasing method only from the n original shadow images generated by previous existed (k, n) threshold random grids-based visual secret sharing (RGVSS). Without knowing the original generation algorithm and the original secret image, q new shadow images can be obtained from the original n shadow images without reprinting the original ones, as a result (k,n+q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, n+q)$$\end{document} threshold RGVSS will be gained. Theoretical analysis and experiments are conducted to evaluate the security and efficiency of the proposed scheme. More... »

PAGES

13-24

References to SciGraph publications

  • 2015-10-27. An enhanced threshold visual secret sharing based on random grids in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2014-07-09. Visual Cryptography and Random Grids Schemes in DIGITAL-FORENSICS AND WATERMARKING
  • 1995. Visual cryptography in ADVANCES IN CRYPTOLOGY — EUROCRYPT'94
  • 2010. A Comprehensive Study of Visual Cryptography in TRANSACTIONS ON DATA HIDING AND MULTIMEDIA SECURITY V
  • 2015-06-13. Design a new visual cryptography for human-verifiable authentication in accessing a database in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11554-016-0639-2

    DOI

    http://dx.doi.org/10.1007/s11554-016-0639-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004466947


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Xuehu", 
            "id": "sg:person.010467364517.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yuliang", 
            "id": "sg:person.015112370271.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11554-015-0511-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018383357", 
              "https://doi.org/10.1007/s11554-015-0511-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14298-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050017989", 
              "https://doi.org/10.1007/978-3-642-14298-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-43886-2_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018728677", 
              "https://doi.org/10.1007/978-3-662-43886-2_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-015-0540-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022432477", 
              "https://doi.org/10.1007/s11554-015-0540-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0053419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008839066", 
              "https://doi.org/10.1007/bfb0053419"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09-26", 
        "datePublishedReg": "2016-09-26", 
        "description": "In (k,\u00a0n) visual secret sharing (VSS), a secret image is generated into n shadow images printed onto transparencies and distributed to n associated participants. The secret image can be recovered by stacking any k or more shadow images and human visual system without cryptographic computation. The previous VSS schemes neglected participants increasing. However, in some applications, some new shadow images need to be generated because some new participants join the secret sharing. In this paper, we consider the new participants increasing issue as well as propose a participants increasing method only from the n original shadow images generated by previous existed (k,\u00a0n) threshold random grids-based visual secret sharing (RGVSS). Without knowing the original generation algorithm and the original secret image, q new shadow images can be obtained from the original n shadow images without reprinting the original ones, as a result (k,n+q)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(k, n+q)$$\\end{document} threshold RGVSS will be gained. Theoretical analysis and experiments are conducted to evaluate the security and efficiency of the proposed scheme.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11554-016-0639-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136113", 
            "issn": [
              "1861-8200", 
              "1861-8219"
            ], 
            "name": "Journal of Real-Time Image Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "random grid-based visual secret sharing", 
          "visual secret sharing", 
          "secret sharing", 
          "secret image", 
          "shadow images", 
          "original secret image", 
          "more shadow images", 
          "n shadow images", 
          "human visual system", 
          "cryptographic computations", 
          "VSS schemes", 
          "generation algorithm", 
          "sharing", 
          "images", 
          "new participants", 
          "original one", 
          "visual system", 
          "scheme", 
          "security", 
          "algorithm", 
          "theoretical analysis", 
          "computation", 
          "propose", 
          "applications", 
          "system", 
          "issues", 
          "efficiency", 
          "transparency", 
          "experiments", 
          "method", 
          "one", 
          "results", 
          "participants", 
          "analysis", 
          "paper"
        ], 
        "name": "Participants increasing for threshold random grids-based visual secret sharing", 
        "pagination": "13-24", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004466947"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11554-016-0639-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11554-016-0639-2", 
          "https://app.dimensions.ai/details/publication/pub.1004466947"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_707.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11554-016-0639-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11554-016-0639-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11554-016-0639-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11554-016-0639-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11554-016-0639-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      21 PREDICATES      64 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11554-016-0639-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N74f545ec86a44e749b4e4b29ee957bbe
    4 schema:citation sg:pub.10.1007/978-3-642-14298-7_5
    5 sg:pub.10.1007/978-3-662-43886-2_8
    6 sg:pub.10.1007/bfb0053419
    7 sg:pub.10.1007/s11554-015-0511-9
    8 sg:pub.10.1007/s11554-015-0540-4
    9 schema:datePublished 2016-09-26
    10 schema:datePublishedReg 2016-09-26
    11 schema:description In (k, n) visual secret sharing (VSS), a secret image is generated into n shadow images printed onto transparencies and distributed to n associated participants. The secret image can be recovered by stacking any k or more shadow images and human visual system without cryptographic computation. The previous VSS schemes neglected participants increasing. However, in some applications, some new shadow images need to be generated because some new participants join the secret sharing. In this paper, we consider the new participants increasing issue as well as propose a participants increasing method only from the n original shadow images generated by previous existed (k, n) threshold random grids-based visual secret sharing (RGVSS). Without knowing the original generation algorithm and the original secret image, q new shadow images can be obtained from the original n shadow images without reprinting the original ones, as a result (k,n+q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, n+q)$$\end{document} threshold RGVSS will be gained. Theoretical analysis and experiments are conducted to evaluate the security and efficiency of the proposed scheme.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Na20f5b7b0b92434d8286d9ab8d46c8ab
    15 Na5285b45371d41709eaa925658a26606
    16 sg:journal.1136113
    17 schema:keywords VSS schemes
    18 algorithm
    19 analysis
    20 applications
    21 computation
    22 cryptographic computations
    23 efficiency
    24 experiments
    25 generation algorithm
    26 human visual system
    27 images
    28 issues
    29 method
    30 more shadow images
    31 n shadow images
    32 new participants
    33 one
    34 original one
    35 original secret image
    36 paper
    37 participants
    38 propose
    39 random grid-based visual secret sharing
    40 results
    41 scheme
    42 secret image
    43 secret sharing
    44 security
    45 shadow images
    46 sharing
    47 system
    48 theoretical analysis
    49 transparency
    50 visual secret sharing
    51 visual system
    52 schema:name Participants increasing for threshold random grids-based visual secret sharing
    53 schema:pagination 13-24
    54 schema:productId N14786378e1a740ff8ea8705b8b182987
    55 N8f9f2d016adf4753aeaa63d26b10a497
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004466947
    57 https://doi.org/10.1007/s11554-016-0639-2
    58 schema:sdDatePublished 2022-12-01T06:34
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N06d18c2300f14a0fa444b4a2c0842a52
    61 schema:url https://doi.org/10.1007/s11554-016-0639-2
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N06d18c2300f14a0fa444b4a2c0842a52 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N14786378e1a740ff8ea8705b8b182987 schema:name dimensions_id
    68 schema:value pub.1004466947
    69 rdf:type schema:PropertyValue
    70 N74f545ec86a44e749b4e4b29ee957bbe rdf:first sg:person.010467364517.31
    71 rdf:rest N8fee71d0b90340a89e2c1fbe337e6379
    72 N8f9f2d016adf4753aeaa63d26b10a497 schema:name doi
    73 schema:value 10.1007/s11554-016-0639-2
    74 rdf:type schema:PropertyValue
    75 N8fee71d0b90340a89e2c1fbe337e6379 rdf:first sg:person.015112370271.93
    76 rdf:rest rdf:nil
    77 Na20f5b7b0b92434d8286d9ab8d46c8ab schema:issueNumber 1
    78 rdf:type schema:PublicationIssue
    79 Na5285b45371d41709eaa925658a26606 schema:volumeNumber 14
    80 rdf:type schema:PublicationVolume
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Artificial Intelligence and Image Processing
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1136113 schema:issn 1861-8200
    88 1861-8219
    89 schema:name Journal of Real-Time Image Processing
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:person.010467364517.31 schema:affiliation grid-institutes:None
    93 schema:familyName Yan
    94 schema:givenName Xuehu
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
    96 rdf:type schema:Person
    97 sg:person.015112370271.93 schema:affiliation grid-institutes:None
    98 schema:familyName Lu
    99 schema:givenName Yuliang
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
    101 rdf:type schema:Person
    102 sg:pub.10.1007/978-3-642-14298-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017989
    103 https://doi.org/10.1007/978-3-642-14298-7_5
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/978-3-662-43886-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728677
    106 https://doi.org/10.1007/978-3-662-43886-2_8
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bfb0053419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839066
    109 https://doi.org/10.1007/bfb0053419
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s11554-015-0511-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018383357
    112 https://doi.org/10.1007/s11554-015-0511-9
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s11554-015-0540-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
    115 https://doi.org/10.1007/s11554-015-0540-4
    116 rdf:type schema:CreativeWork
    117 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
    118 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...