An enhanced threshold visual secret sharing based on random grids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10-27

AUTHORS

Xuehu Yan, Xin Liu, Ching-Nung Yang

ABSTRACT

Random grids (RG)-based visual secret sharing (VSS) scheme can easily avoid the pixel expansion problem as well as requires no codebook design. However, previous scheme still suffers from low visual quality. In this paper, a new threshold RG-based VSS scheme aiming at improving the visual quality of the previewed image is presented. Compared with previous schemes, our scheme can gain better visual quality in the reconstructed images as well as (k, n) threshold. In addition, the factor affecting the visual quality is analyzed and the differences between related approaches are discussed. More... »

PAGES

61-73

References to SciGraph publications

  • 2014-07-09. Visual Cryptography and Random Grids Schemes in DIGITAL-FORENSICS AND WATERMARKING
  • 2010. A Comprehensive Study of Visual Cryptography in TRANSACTIONS ON DATA HIDING AND MULTIMEDIA SECURITY V
  • 1995. Visual cryptography in ADVANCES IN CRYPTOLOGY — EUROCRYPT'94
  • 2014-06-13. Random grids-based visual secret sharing with improved visual quality via error diffusion in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2013-12-24. Visual secret sharing based on random grids with abilities of AND and XOR lossless recovery in MULTIMEDIA TOOLS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11554-015-0540-4

    DOI

    http://dx.doi.org/10.1007/s11554-015-0540-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022432477


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Xuehu", 
            "id": "sg:person.010467364517.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China", 
              "id": "http://www.grid.ac/institutes/grid.411994.0", 
              "name": [
                "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China", 
                "Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Xin", 
            "id": "sg:person.014301003402.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301003402.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of CSIE, National Dong Hwa University, Hualien 974, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260567.0", 
              "name": [
                "Department of CSIE, National Dong Hwa University, Hualien 974, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Ching-Nung", 
            "id": "sg:person.012350400311.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350400311.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11042-013-1784-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021413130", 
              "https://doi.org/10.1007/s11042-013-1784-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-43886-2_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018728677", 
              "https://doi.org/10.1007/978-3-662-43886-2_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-014-2080-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015360804", 
              "https://doi.org/10.1007/s11042-014-2080-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0053419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008839066", 
              "https://doi.org/10.1007/bfb0053419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14298-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050017989", 
              "https://doi.org/10.1007/978-3-642-14298-7_5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10-27", 
        "datePublishedReg": "2015-10-27", 
        "description": "Random grids (RG)-based visual secret sharing (VSS) scheme can easily avoid the pixel expansion problem as well as requires no codebook design. However, previous scheme still suffers from low visual quality. In this paper, a new threshold RG-based VSS scheme aiming at improving the visual quality of the previewed image is presented. Compared with previous schemes, our scheme can gain better visual quality in the reconstructed images as well as (k,\u00a0n) threshold. In addition, the factor affecting the visual quality is analyzed and the differences between related approaches are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11554-015-0540-4", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8292720", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7203143", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6998614", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136113", 
            "issn": [
              "1861-8200", 
              "1861-8219"
            ], 
            "name": "Journal of Real-Time Image Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "visual quality", 
          "random grids", 
          "visual secret sharing scheme", 
          "previous schemes", 
          "threshold visual secret sharing", 
          "visual secret sharing", 
          "pixel expansion problem", 
          "secret sharing scheme", 
          "low visual quality", 
          "better visual quality", 
          "VSS schemes", 
          "secret sharing", 
          "sharing scheme", 
          "codebook design", 
          "related approaches", 
          "reconstructed images", 
          "scheme", 
          "images", 
          "expansion problem", 
          "grid", 
          "sharing", 
          "quality", 
          "design", 
          "threshold", 
          "factors", 
          "differences", 
          "addition", 
          "approach", 
          "RG", 
          "problem", 
          "paper"
        ], 
        "name": "An enhanced threshold visual secret sharing based on random grids", 
        "pagination": "61-73", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022432477"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11554-015-0540-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11554-015-0540-4", 
          "https://app.dimensions.ai/details/publication/pub.1022432477"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_675.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11554-015-0540-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0540-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0540-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0540-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0540-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      21 PREDICATES      60 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11554-015-0540-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nfe31358c2bf84c0e8d58fb2bca7cf641
    4 schema:citation sg:pub.10.1007/978-3-642-14298-7_5
    5 sg:pub.10.1007/978-3-662-43886-2_8
    6 sg:pub.10.1007/bfb0053419
    7 sg:pub.10.1007/s11042-013-1784-2
    8 sg:pub.10.1007/s11042-014-2080-5
    9 schema:datePublished 2015-10-27
    10 schema:datePublishedReg 2015-10-27
    11 schema:description Random grids (RG)-based visual secret sharing (VSS) scheme can easily avoid the pixel expansion problem as well as requires no codebook design. However, previous scheme still suffers from low visual quality. In this paper, a new threshold RG-based VSS scheme aiming at improving the visual quality of the previewed image is presented. Compared with previous schemes, our scheme can gain better visual quality in the reconstructed images as well as (k, n) threshold. In addition, the factor affecting the visual quality is analyzed and the differences between related approaches are discussed.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N397445fd29fd45e38f5b349b697925a5
    15 N488a8adb9afc4ed8883a6dc372cb0fcc
    16 sg:journal.1136113
    17 schema:keywords RG
    18 VSS schemes
    19 addition
    20 approach
    21 better visual quality
    22 codebook design
    23 design
    24 differences
    25 expansion problem
    26 factors
    27 grid
    28 images
    29 low visual quality
    30 paper
    31 pixel expansion problem
    32 previous schemes
    33 problem
    34 quality
    35 random grids
    36 reconstructed images
    37 related approaches
    38 scheme
    39 secret sharing
    40 secret sharing scheme
    41 sharing
    42 sharing scheme
    43 threshold
    44 threshold visual secret sharing
    45 visual quality
    46 visual secret sharing
    47 visual secret sharing scheme
    48 schema:name An enhanced threshold visual secret sharing based on random grids
    49 schema:pagination 61-73
    50 schema:productId N04a8a3ecfca44c259fef20af40a5358e
    51 N83d074343b864ff3a6524163e150db80
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
    53 https://doi.org/10.1007/s11554-015-0540-4
    54 schema:sdDatePublished 2022-12-01T06:33
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N1a385996f5c6448a890a8c0c952930a4
    57 schema:url https://doi.org/10.1007/s11554-015-0540-4
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N04a8a3ecfca44c259fef20af40a5358e schema:name doi
    62 schema:value 10.1007/s11554-015-0540-4
    63 rdf:type schema:PropertyValue
    64 N16df7d67230343e4a2a2b7225336a3d2 rdf:first sg:person.012350400311.86
    65 rdf:rest rdf:nil
    66 N1a385996f5c6448a890a8c0c952930a4 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N397445fd29fd45e38f5b349b697925a5 schema:volumeNumber 14
    69 rdf:type schema:PublicationVolume
    70 N488a8adb9afc4ed8883a6dc372cb0fcc schema:issueNumber 1
    71 rdf:type schema:PublicationIssue
    72 N79b596edad1642ea9e2107131e040fb3 rdf:first sg:person.014301003402.29
    73 rdf:rest N16df7d67230343e4a2a2b7225336a3d2
    74 N83d074343b864ff3a6524163e150db80 schema:name dimensions_id
    75 schema:value pub.1022432477
    76 rdf:type schema:PropertyValue
    77 Nfe31358c2bf84c0e8d58fb2bca7cf641 rdf:first sg:person.010467364517.31
    78 rdf:rest N79b596edad1642ea9e2107131e040fb3
    79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Information and Computing Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Artificial Intelligence and Image Processing
    84 rdf:type schema:DefinedTerm
    85 sg:grant.6998614 http://pending.schema.org/fundedItem sg:pub.10.1007/s11554-015-0540-4
    86 rdf:type schema:MonetaryGrant
    87 sg:grant.7203143 http://pending.schema.org/fundedItem sg:pub.10.1007/s11554-015-0540-4
    88 rdf:type schema:MonetaryGrant
    89 sg:grant.8292720 http://pending.schema.org/fundedItem sg:pub.10.1007/s11554-015-0540-4
    90 rdf:type schema:MonetaryGrant
    91 sg:journal.1136113 schema:issn 1861-8200
    92 1861-8219
    93 schema:name Journal of Real-Time Image Processing
    94 schema:publisher Springer Nature
    95 rdf:type schema:Periodical
    96 sg:person.010467364517.31 schema:affiliation grid-institutes:None
    97 schema:familyName Yan
    98 schema:givenName Xuehu
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
    100 rdf:type schema:Person
    101 sg:person.012350400311.86 schema:affiliation grid-institutes:grid.260567.0
    102 schema:familyName Yang
    103 schema:givenName Ching-Nung
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350400311.86
    105 rdf:type schema:Person
    106 sg:person.014301003402.29 schema:affiliation grid-institutes:grid.411994.0
    107 schema:familyName Liu
    108 schema:givenName Xin
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301003402.29
    110 rdf:type schema:Person
    111 sg:pub.10.1007/978-3-642-14298-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017989
    112 https://doi.org/10.1007/978-3-642-14298-7_5
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-662-43886-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728677
    115 https://doi.org/10.1007/978-3-662-43886-2_8
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bfb0053419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839066
    118 https://doi.org/10.1007/bfb0053419
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s11042-013-1784-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021413130
    121 https://doi.org/10.1007/s11042-013-1784-2
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s11042-014-2080-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360804
    124 https://doi.org/10.1007/s11042-014-2080-5
    125 rdf:type schema:CreativeWork
    126 grid-institutes:None schema:alternateName Electronic Engineering Institute, 230037, Hefei, China
    127 schema:name Electronic Engineering Institute, 230037, Hefei, China
    128 rdf:type schema:Organization
    129 grid-institutes:grid.260567.0 schema:alternateName Department of CSIE, National Dong Hwa University, Hualien 974, Taiwan
    130 schema:name Department of CSIE, National Dong Hwa University, Hualien 974, Taiwan
    131 rdf:type schema:Organization
    132 grid-institutes:grid.411994.0 schema:alternateName Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China
    133 schema:name Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China
    134 School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...