A fast and robust homography scheme for real-time planar target detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Hamid Bazargani, Olexa Bilaniuk, Robert Laganière

ABSTRACT

The present paper is concerned with the problem of robust pose estimation for planar targets in the context of real-time mobile vision. For robust recognition of targets at very low computational costs, we employ feature-based methods which are based on local binary descriptors allowing fast feature matching at run time. The matching set is then fed to a robust parameter estimation algorithm to obtain a reliable estimate of homography. The robust estimation of model parameters, which in our case is a 2D homographic transformation, constitutes an essential part of the whole recognition process. We present a highly optimized and device-friendly implementation of homography estimation through a unified hypothesize-and-verify framework. This framework is specifically designed to meet the growing demand for fast and robust estimation on power-constrained platforms. The focus of the approach described in this paper is not only on developing fast algorithms for the recognition framework, but also on the optimized implementation of such algorithms by accounting for the computing capacity of modern CPUs. The experimentations show that the resulting homography estimation implementation proposed in this paper brings a speedup of 25× over the regular OpenCV RANSAC homography estimation function. More... »

PAGES

1-20

References to SciGraph publications

  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2013. Training Binary Descriptors for Improved Robustness and Efficiency in Real-Time Matching in IMAGE ANALYSIS AND PROCESSING – ICIAP 2013
  • 2011-09. Binary Histogrammed Intensity Patches for Efficient and Robust Matching in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2010. BRIEF: Binary Robust Independent Elementary Features in COMPUTER VISION – ECCV 2010
  • 2006. Machine Learning for High-Speed Corner Detection in COMPUTER VISION – ECCV 2006
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11554-015-0508-4

    DOI

    http://dx.doi.org/10.1007/s11554-015-0508-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053554389


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Ottawa", 
              "id": "https://www.grid.ac/institutes/grid.28046.38", 
              "name": [
                "School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5, Ottawa, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bazargani", 
            "givenName": "Hamid", 
            "id": "sg:person.012403345262.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403345262.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ottawa", 
              "id": "https://www.grid.ac/institutes/grid.28046.38", 
              "name": [
                "School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5, Ottawa, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bilaniuk", 
            "givenName": "Olexa", 
            "id": "sg:person.012113512564.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113512564.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ottawa", 
              "id": "https://www.grid.ac/institutes/grid.28046.38", 
              "name": [
                "School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5, Ottawa, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lagani\u00e8re", 
            "givenName": "Robert", 
            "id": "sg:person.01144533722.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/276698.276876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004824658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-011-0430-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007438718", 
              "https://doi.org/10.1007/s11263-011-0430-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-41184-7_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011956355", 
              "https://doi.org/10.1007/978-3-642-41184-7_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11744023_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016269638", 
              "https://doi.org/10.1007/11744023_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11744023_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016269638", 
              "https://doi.org/10.1007/11744023_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1999.0832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025309926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/358669.358692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033921345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15561-1_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034663897", 
              "https://doi.org/10.1007/978-3-642-15561-1_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15561-1_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034663897", 
              "https://doi.org/10.1007/978-3-642-15561-1_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2007.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040969278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.70787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2009.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2012.257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2004.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093173080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2011.6126544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094015616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2012.6247715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094268014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/prrs.2014.6914290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094341382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvprw.2014.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094407439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094828208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.1997.609451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094949846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2005.198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094973894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2011.6126542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095050436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2005.104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095148028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2004.1315170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095174428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2008.4637338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095241534"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "The present paper is concerned with the problem of robust pose estimation for planar targets in the context of real-time mobile vision. For robust recognition of targets at very low computational costs, we employ feature-based methods which are based on local binary descriptors allowing fast feature matching at run time. The matching set is then fed to a robust parameter estimation algorithm to obtain a reliable estimate of homography. The robust estimation of model parameters, which in our case is a 2D homographic transformation, constitutes an essential part of the whole recognition process. We present a highly optimized and device-friendly implementation of homography estimation through a unified hypothesize-and-verify framework. This framework is specifically designed to meet the growing demand for fast and robust estimation on power-constrained platforms. The focus of the approach described in this paper is not only on developing fast algorithms for the recognition framework, but also on the optimized implementation of such algorithms by accounting for the computing capacity of modern CPUs. The experimentations show that the resulting homography estimation implementation proposed in this paper brings a speedup of 25\u00d7 over the regular OpenCV RANSAC homography estimation function.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11554-015-0508-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136113", 
            "issn": [
              "1861-8200", 
              "1861-8219"
            ], 
            "name": "Journal of Real-Time Image Processing", 
            "type": "Periodical"
          }
        ], 
        "name": "A fast and robust homography scheme for real-time planar target detection", 
        "pagination": "1-20", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ff1609012d914703cd921127173d3031c39d7a4b57ccd288d701a1bfe9dc740c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11554-015-0508-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053554389"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11554-015-0508-4", 
          "https://app.dimensions.ai/details/publication/pub.1053554389"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000524.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11554-015-0508-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0508-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0508-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0508-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11554-015-0508-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      21 PREDICATES      50 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11554-015-0508-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N592248699f7d44f9bdd7a0cfd7aa698c
    4 schema:citation sg:pub.10.1007/11744023_34
    5 sg:pub.10.1007/978-3-642-15561-1_56
    6 sg:pub.10.1007/978-3-642-41184-7_30
    7 sg:pub.10.1007/s11263-011-0430-6
    8 sg:pub.10.1023/b:visi.0000029664.99615.94
    9 https://doi.org/10.1006/cviu.1999.0832
    10 https://doi.org/10.1016/j.cviu.2007.09.014
    11 https://doi.org/10.1109/cvpr.1997.609451
    12 https://doi.org/10.1109/cvpr.2004.1315170
    13 https://doi.org/10.1109/cvpr.2005.221
    14 https://doi.org/10.1109/cvpr.2012.6247715
    15 https://doi.org/10.1109/cvprw.2014.23
    16 https://doi.org/10.1109/iccv.2005.104
    17 https://doi.org/10.1109/iccv.2005.198
    18 https://doi.org/10.1109/iccv.2011.6126542
    19 https://doi.org/10.1109/iccv.2011.6126544
    20 https://doi.org/10.1109/ismar.2004.53
    21 https://doi.org/10.1109/ismar.2008.4637338
    22 https://doi.org/10.1109/prrs.2014.6914290
    23 https://doi.org/10.1109/tpami.2006.188
    24 https://doi.org/10.1109/tpami.2007.70787
    25 https://doi.org/10.1109/tpami.2009.23
    26 https://doi.org/10.1109/tpami.2012.257
    27 https://doi.org/10.1145/276698.276876
    28 https://doi.org/10.1145/358669.358692
    29 schema:datePublished 2018-12
    30 schema:datePublishedReg 2018-12-01
    31 schema:description The present paper is concerned with the problem of robust pose estimation for planar targets in the context of real-time mobile vision. For robust recognition of targets at very low computational costs, we employ feature-based methods which are based on local binary descriptors allowing fast feature matching at run time. The matching set is then fed to a robust parameter estimation algorithm to obtain a reliable estimate of homography. The robust estimation of model parameters, which in our case is a 2D homographic transformation, constitutes an essential part of the whole recognition process. We present a highly optimized and device-friendly implementation of homography estimation through a unified hypothesize-and-verify framework. This framework is specifically designed to meet the growing demand for fast and robust estimation on power-constrained platforms. The focus of the approach described in this paper is not only on developing fast algorithms for the recognition framework, but also on the optimized implementation of such algorithms by accounting for the computing capacity of modern CPUs. The experimentations show that the resulting homography estimation implementation proposed in this paper brings a speedup of 25× over the regular OpenCV RANSAC homography estimation function.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf sg:journal.1136113
    36 schema:name A fast and robust homography scheme for real-time planar target detection
    37 schema:pagination 1-20
    38 schema:productId N02934509c068491fb4cfaaef369d3227
    39 Nce34040d618040d79cebe7d953286b1f
    40 Nd6005efeac424ac8b615fe982b946326
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053554389
    42 https://doi.org/10.1007/s11554-015-0508-4
    43 schema:sdDatePublished 2019-04-10T22:35
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N846c6eacd541492e8d5c02aa13bdb60c
    46 schema:url http://link.springer.com/10.1007%2Fs11554-015-0508-4
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N019db7ecbae74671a48ce71d766b202c rdf:first sg:person.012113512564.82
    51 rdf:rest N6db1ffeb8dc645f288c4082d52c41ecc
    52 N02934509c068491fb4cfaaef369d3227 schema:name readcube_id
    53 schema:value ff1609012d914703cd921127173d3031c39d7a4b57ccd288d701a1bfe9dc740c
    54 rdf:type schema:PropertyValue
    55 N592248699f7d44f9bdd7a0cfd7aa698c rdf:first sg:person.012403345262.24
    56 rdf:rest N019db7ecbae74671a48ce71d766b202c
    57 N6db1ffeb8dc645f288c4082d52c41ecc rdf:first sg:person.01144533722.06
    58 rdf:rest rdf:nil
    59 N846c6eacd541492e8d5c02aa13bdb60c schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Nce34040d618040d79cebe7d953286b1f schema:name doi
    62 schema:value 10.1007/s11554-015-0508-4
    63 rdf:type schema:PropertyValue
    64 Nd6005efeac424ac8b615fe982b946326 schema:name dimensions_id
    65 schema:value pub.1053554389
    66 rdf:type schema:PropertyValue
    67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Information and Computing Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Artificial Intelligence and Image Processing
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1136113 schema:issn 1861-8200
    74 1861-8219
    75 schema:name Journal of Real-Time Image Processing
    76 rdf:type schema:Periodical
    77 sg:person.01144533722.06 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
    78 schema:familyName Laganière
    79 schema:givenName Robert
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06
    81 rdf:type schema:Person
    82 sg:person.012113512564.82 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
    83 schema:familyName Bilaniuk
    84 schema:givenName Olexa
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113512564.82
    86 rdf:type schema:Person
    87 sg:person.012403345262.24 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
    88 schema:familyName Bazargani
    89 schema:givenName Hamid
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403345262.24
    91 rdf:type schema:Person
    92 sg:pub.10.1007/11744023_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016269638
    93 https://doi.org/10.1007/11744023_34
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/978-3-642-15561-1_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034663897
    96 https://doi.org/10.1007/978-3-642-15561-1_56
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/978-3-642-41184-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011956355
    99 https://doi.org/10.1007/978-3-642-41184-7_30
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s11263-011-0430-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007438718
    102 https://doi.org/10.1007/s11263-011-0430-6
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    105 https://doi.org/10.1023/b:visi.0000029664.99615.94
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1006/cviu.1999.0832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025309926
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.cviu.2007.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040969278
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/cvpr.1997.609451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094949846
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/cvpr.2004.1315170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095174428
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/cvpr.2005.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094828208
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/cvpr.2012.6247715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094268014
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/cvprw.2014.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094407439
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/iccv.2005.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095148028
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/iccv.2005.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094973894
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/iccv.2011.6126542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095050436
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/iccv.2011.6126544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094015616
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/ismar.2004.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093173080
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/ismar.2008.4637338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095241534
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/prrs.2014.6914290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094341382
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tpami.2006.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743024
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/tpami.2007.70787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743411
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/tpami.2009.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743773
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tpami.2012.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744352
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/276698.276876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004824658
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1145/358669.358692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921345
    146 rdf:type schema:CreativeWork
    147 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
    148 schema:name School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...