Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-23

AUTHORS

Alireza Sedghi, Mehran Pesteie, Golara Javadi, Shekoofeh Azizi, Pingkun Yan, Jin Tae Kwak, Sheng Xu, Baris Turkbey, Peter Choyke, Peter Pinto, Bradford Wood, Robert Rohling, Purang Abolmaesumi, Parvin Mousavi

ABSTRACT

Prostate cancer (PCa) is the most frequent noncutaneous cancer in men. Early detection of PCa is essential for clinical decision making, and reducing metastasis and mortality rates. The current approach for PCa diagnosis is histopathologic analysis of core biopsies taken under transrectal ultrasound guidance (TRUS-guided). Both TRUS-guided systematic biopsy and MR-TRUS-guided fusion biopsy have limitations in accurately identifying PCa, intraoperatively. There is a need to augment this process by visualizing highly probable areas of PCa. Temporal enhanced ultrasound (TeUS) has emerged as a promising modality for PCa detection. Prior work focused on supervised classification of PCa verified by gold standard pathology. Pathology labels are noisy, and data from an entire core have a single label even when significantly heterogeneous. Additionally, supervised methods are limited by data from cores with known pathology, and a significant portion of prostate data is discarded without being used. We provide an end-to-end unsupervised solution to map PCa distribution from TeUS data using an innovative representation learning method, deep neural maps. TeUS data are transformed to a topologically arranged hyper-lattice, where similar samples are closer together in the lattice. Therefore, similar regions of malignant and benign tissue in the prostate are clustered together. Our proposed method increases the number of training samples by several orders of magnitude. Data from biopsy cores with known labels are used to associate the clusters with PCa. Cancer probability maps generated using the unsupervised clustering of TeUS data help intuitively visualize the distribution of abnormal tissue for augmenting TRUS-guided biopsies. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11548-019-01950-0

DOI

http://dx.doi.org/10.1007/s11548-019-01950-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112965489

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30905010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Queen's University", 
          "id": "https://www.grid.ac/institutes/grid.410356.5", 
          "name": [
            "Queen\u2019s University, Kingston, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedghi", 
        "givenName": "Alireza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "The University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesteie", 
        "givenName": "Mehran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "The University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Javadi", 
        "givenName": "Golara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "The University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azizi", 
        "givenName": "Shekoofeh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, Troy, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Pingkun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sejong University", 
          "id": "https://www.grid.ac/institutes/grid.263333.4", 
          "name": [
            "Sejong University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwak", 
        "givenName": "Jin Tae", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "The National Institutes of Health Research Center, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Sheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "The National Institutes of Health Research Center, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turkbey", 
        "givenName": "Baris", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "The National Institutes of Health Research Center, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choyke", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "The National Institutes of Health Research Center, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinto", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health", 
          "id": "https://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "The National Institutes of Health Research Center, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wood", 
        "givenName": "Bradford", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "The University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohling", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "The University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abolmaesumi", 
        "givenName": "Purang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's University", 
          "id": "https://www.grid.ac/institutes/grid.410356.5", 
          "name": [
            "Queen\u2019s University, Kingston, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mousavi", 
        "givenName": "Parvin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.juro.2013.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002426032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635558", 
          "https://doi.org/10.1007/bf00337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3457710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012662054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013219854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-015-1184-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015281033", 
          "https://doi.org/10.1007/s11548-015-1184-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-14-0247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015691384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diii.2013.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016647424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2013.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019398945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urolonc.2011.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023980078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2014.17942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028579655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-016-1395-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032977798", 
          "https://doi.org/10.1007/s11548-016-1395-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-5721-0_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035824916", 
          "https://doi.org/10.1007/1-4020-5721-0_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2013.09.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045734133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(05)00957-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047791600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24571-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049133357", 
          "https://doi.org/10.1007/978-3-319-24571-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(16)32401-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053755600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.557663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2427739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)38664-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079183736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2255540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084716533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-017-1627-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086101723", 
          "https://doi.org/10.1007/s11548-017-1627-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-017-1627-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086101723", 
          "https://doi.org/10.1007/s11548-017-1627-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada110902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091840451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bibm.2015.7359725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095299626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tuffc.2017.2785230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099878873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2018.2849959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105109902"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-23", 
    "datePublishedReg": "2019-03-23", 
    "description": "Prostate cancer (PCa) is the most frequent noncutaneous cancer in men. Early detection of PCa is essential for clinical decision making, and reducing metastasis and mortality rates. The current approach for PCa diagnosis is histopathologic analysis of core biopsies taken under transrectal ultrasound guidance (TRUS-guided). Both TRUS-guided systematic biopsy and MR-TRUS-guided fusion biopsy have limitations in accurately identifying PCa, intraoperatively. There is a need to augment this process by visualizing highly probable areas of PCa. Temporal enhanced ultrasound (TeUS) has emerged as a promising modality for PCa detection. Prior work focused on supervised classification of PCa verified by gold standard pathology. Pathology labels are noisy, and data from an entire core have a single label even when significantly heterogeneous. Additionally, supervised methods are limited by data from cores with known pathology, and a significant portion of prostate data is discarded without being used. We provide an end-to-end unsupervised solution to map PCa distribution from TeUS data using an innovative representation learning method, deep neural maps. TeUS data are transformed to a topologically arranged hyper-lattice, where similar samples are closer together in the lattice. Therefore, similar regions of malignant and benign tissue in the prostate are clustered together. Our proposed method increases the number of training samples by several orders of magnitude. Data from biopsy cores with known labels are used to associate the clusters with PCa. Cancer probability maps generated using the unsupervised clustering of TeUS data help intuitively visualize the distribution of abnormal tissue for augmenting TRUS-guided biopsies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11548-019-01950-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041191", 
        "issn": [
          "1861-6410", 
          "1861-6429"
        ], 
        "name": "International Journal of Computer Assisted Radiology and Surgery", 
        "type": "Periodical"
      }
    ], 
    "name": "Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "877c6ef907bd3e9f69aa524c6e0e9c391532089d509fc3a4d98ac58bed1e85fe"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30905010"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101499225"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11548-019-01950-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112965489"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11548-019-01950-0", 
      "https://app.dimensions.ai/details/publication/pub.1112965489"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71677_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11548-019-01950-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01950-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01950-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01950-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01950-0'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      51 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11548-019-01950-0 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N377ed676c75945d98dec2b783b13eba1
4 schema:citation sg:pub.10.1007/1-4020-5721-0_35
5 sg:pub.10.1007/978-3-319-24571-3_9
6 sg:pub.10.1007/bf00337288
7 sg:pub.10.1007/s11548-015-1184-3
8 sg:pub.10.1007/s11548-016-1395-2
9 sg:pub.10.1007/s11548-017-1627-0
10 https://doi.org/10.1001/jama.2014.17942
11 https://doi.org/10.1016/j.diii.2013.01.017
12 https://doi.org/10.1016/j.eururo.2013.03.025
13 https://doi.org/10.1016/j.eururo.2013.09.046
14 https://doi.org/10.1016/j.juro.2013.04.043
15 https://doi.org/10.1016/j.neunet.2014.09.003
16 https://doi.org/10.1016/j.urolonc.2011.02.014
17 https://doi.org/10.1016/s0022-5347(05)00957-2
18 https://doi.org/10.1016/s0022-5347(17)38664-0
19 https://doi.org/10.1016/s0140-6736(16)32401-1
20 https://doi.org/10.1109/72.557663
21 https://doi.org/10.1109/bibm.2015.7359725
22 https://doi.org/10.1109/tmi.2015.2427739
23 https://doi.org/10.1109/tmi.2018.2849959
24 https://doi.org/10.1109/tuffc.2017.2785230
25 https://doi.org/10.1117/12.2255540
26 https://doi.org/10.1118/1.3457710
27 https://doi.org/10.1158/1078-0432.ccr-14-0247
28 https://doi.org/10.21236/ada110902
29 schema:datePublished 2019-03-23
30 schema:datePublishedReg 2019-03-23
31 schema:description Prostate cancer (PCa) is the most frequent noncutaneous cancer in men. Early detection of PCa is essential for clinical decision making, and reducing metastasis and mortality rates. The current approach for PCa diagnosis is histopathologic analysis of core biopsies taken under transrectal ultrasound guidance (TRUS-guided). Both TRUS-guided systematic biopsy and MR-TRUS-guided fusion biopsy have limitations in accurately identifying PCa, intraoperatively. There is a need to augment this process by visualizing highly probable areas of PCa. Temporal enhanced ultrasound (TeUS) has emerged as a promising modality for PCa detection. Prior work focused on supervised classification of PCa verified by gold standard pathology. Pathology labels are noisy, and data from an entire core have a single label even when significantly heterogeneous. Additionally, supervised methods are limited by data from cores with known pathology, and a significant portion of prostate data is discarded without being used. We provide an end-to-end unsupervised solution to map PCa distribution from TeUS data using an innovative representation learning method, deep neural maps. TeUS data are transformed to a topologically arranged hyper-lattice, where similar samples are closer together in the lattice. Therefore, similar regions of malignant and benign tissue in the prostate are clustered together. Our proposed method increases the number of training samples by several orders of magnitude. Data from biopsy cores with known labels are used to associate the clusters with PCa. Cancer probability maps generated using the unsupervised clustering of TeUS data help intuitively visualize the distribution of abnormal tissue for augmenting TRUS-guided biopsies.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1041191
36 schema:name Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies
37 schema:pagination 1-8
38 schema:productId N0a29f9cd82294e4e965713952f1b0f93
39 N0dd9ff342bdd4f82b6c15e667efec345
40 N0de32e8000ab49c8810f5f0e2854735d
41 N15199c40491d4bccbacc9b48d50fce47
42 N1cad99a575fa4f459354118bb9c895aa
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112965489
44 https://doi.org/10.1007/s11548-019-01950-0
45 schema:sdDatePublished 2019-04-11T12:57
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N81b1573f9cd0454296cc7a2b65f50556
48 schema:url https://link.springer.com/10.1007%2Fs11548-019-01950-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N06a053316d394d9f81c9958667cd2527 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
53 schema:familyName Azizi
54 schema:givenName Shekoofeh
55 rdf:type schema:Person
56 N095d62f441d846e4a88ece4c33ed3ef1 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
57 schema:familyName Pinto
58 schema:givenName Peter
59 rdf:type schema:Person
60 N0a29f9cd82294e4e965713952f1b0f93 schema:name pubmed_id
61 schema:value 30905010
62 rdf:type schema:PropertyValue
63 N0d37110dd0964a43ad620c340ef8e8d7 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
64 schema:familyName Turkbey
65 schema:givenName Baris
66 rdf:type schema:Person
67 N0dd9ff342bdd4f82b6c15e667efec345 schema:name dimensions_id
68 schema:value pub.1112965489
69 rdf:type schema:PropertyValue
70 N0de32e8000ab49c8810f5f0e2854735d schema:name doi
71 schema:value 10.1007/s11548-019-01950-0
72 rdf:type schema:PropertyValue
73 N15199c40491d4bccbacc9b48d50fce47 schema:name nlm_unique_id
74 schema:value 101499225
75 rdf:type schema:PropertyValue
76 N1cad99a575fa4f459354118bb9c895aa schema:name readcube_id
77 schema:value 877c6ef907bd3e9f69aa524c6e0e9c391532089d509fc3a4d98ac58bed1e85fe
78 rdf:type schema:PropertyValue
79 N309f9e1481434198aad5be0461e71bb5 rdf:first Nd5fcbe912ad04890a653d010f8b08600
80 rdf:rest Na7196b09917144209f28d62c7d1f0b9c
81 N377ed676c75945d98dec2b783b13eba1 rdf:first N50b6fc43678444179c4003be90d60eab
82 rdf:rest Nbb8e90b49eae4e719b78e4e922e6f916
83 N50b6fc43678444179c4003be90d60eab schema:affiliation https://www.grid.ac/institutes/grid.410356.5
84 schema:familyName Sedghi
85 schema:givenName Alireza
86 rdf:type schema:Person
87 N5e70349b3ac94fae820892ce18817272 rdf:first N5f39eae41a9f4cc5974333a67684029d
88 rdf:rest Ndfc1f5f091e4432984723f881382972a
89 N5f39eae41a9f4cc5974333a67684029d schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
90 schema:familyName Abolmaesumi
91 schema:givenName Purang
92 rdf:type schema:Person
93 N63f492b839b74a0fb754cf3ac3e0aaba schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
94 schema:familyName Pesteie
95 schema:givenName Mehran
96 rdf:type schema:Person
97 N6af0b1680a0a46e2ab30936e7172c0f0 schema:affiliation https://www.grid.ac/institutes/grid.410356.5
98 schema:familyName Mousavi
99 schema:givenName Parvin
100 rdf:type schema:Person
101 N75fe3915c91a467089de7932eb49df3f schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
102 schema:familyName Xu
103 schema:givenName Sheng
104 rdf:type schema:Person
105 N7f7910c615b146ccbdbccf683f2b187b schema:affiliation https://www.grid.ac/institutes/grid.33647.35
106 schema:familyName Yan
107 schema:givenName Pingkun
108 rdf:type schema:Person
109 N81b1573f9cd0454296cc7a2b65f50556 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N851333f8c52b4d6093fcf536f0df5ecc rdf:first N7f7910c615b146ccbdbccf683f2b187b
112 rdf:rest Nc93923a4c0884a2988a2392beebc0fbf
113 N91b19586b71b44d3a69f5959532afb98 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
114 schema:familyName Wood
115 schema:givenName Bradford
116 rdf:type schema:Person
117 N9e34df8d5b3441d68fb513b72c088f8f schema:affiliation https://www.grid.ac/institutes/grid.263333.4
118 schema:familyName Kwak
119 schema:givenName Jin Tae
120 rdf:type schema:Person
121 Na7196b09917144209f28d62c7d1f0b9c rdf:first N06a053316d394d9f81c9958667cd2527
122 rdf:rest N851333f8c52b4d6093fcf536f0df5ecc
123 Nb4d0c57d6b214e179d36ce1019fb33cc rdf:first Nc5f22b4ebfe34a7f9ea290d3f585af9b
124 rdf:rest N5e70349b3ac94fae820892ce18817272
125 Nb540854d391d48c7be8ff38a95022669 schema:affiliation https://www.grid.ac/institutes/grid.94365.3d
126 schema:familyName Choyke
127 schema:givenName Peter
128 rdf:type schema:Person
129 Nb93a7c9272814c71a8e88ac1939242d9 rdf:first N095d62f441d846e4a88ece4c33ed3ef1
130 rdf:rest Ndce3b860612640cbad9e5f6da18ba44c
131 Nbb8e90b49eae4e719b78e4e922e6f916 rdf:first N63f492b839b74a0fb754cf3ac3e0aaba
132 rdf:rest N309f9e1481434198aad5be0461e71bb5
133 Nc5f22b4ebfe34a7f9ea290d3f585af9b schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
134 schema:familyName Rohling
135 schema:givenName Robert
136 rdf:type schema:Person
137 Nc93923a4c0884a2988a2392beebc0fbf rdf:first N9e34df8d5b3441d68fb513b72c088f8f
138 rdf:rest Ne7a064d2bef3452b94e34f9a2e99123d
139 Nd5fcbe912ad04890a653d010f8b08600 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
140 schema:familyName Javadi
141 schema:givenName Golara
142 rdf:type schema:Person
143 Nd76e09b7198f4e19a456e774ddfd9d38 rdf:first Nb540854d391d48c7be8ff38a95022669
144 rdf:rest Nb93a7c9272814c71a8e88ac1939242d9
145 Ndce3b860612640cbad9e5f6da18ba44c rdf:first N91b19586b71b44d3a69f5959532afb98
146 rdf:rest Nb4d0c57d6b214e179d36ce1019fb33cc
147 Ndfc1f5f091e4432984723f881382972a rdf:first N6af0b1680a0a46e2ab30936e7172c0f0
148 rdf:rest rdf:nil
149 Ne7a064d2bef3452b94e34f9a2e99123d rdf:first N75fe3915c91a467089de7932eb49df3f
150 rdf:rest Neb4c9fa4d97b4f07b35262e829d3eaaf
151 Neb4c9fa4d97b4f07b35262e829d3eaaf rdf:first N0d37110dd0964a43ad620c340ef8e8d7
152 rdf:rest Nd76e09b7198f4e19a456e774ddfd9d38
153 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
154 schema:name Medical and Health Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
157 schema:name Oncology and Carcinogenesis
158 rdf:type schema:DefinedTerm
159 sg:journal.1041191 schema:issn 1861-6410
160 1861-6429
161 schema:name International Journal of Computer Assisted Radiology and Surgery
162 rdf:type schema:Periodical
163 sg:pub.10.1007/1-4020-5721-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035824916
164 https://doi.org/10.1007/1-4020-5721-0_35
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-319-24571-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049133357
167 https://doi.org/10.1007/978-3-319-24571-3_9
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf00337288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635558
170 https://doi.org/10.1007/bf00337288
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s11548-015-1184-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015281033
173 https://doi.org/10.1007/s11548-015-1184-3
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11548-016-1395-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032977798
176 https://doi.org/10.1007/s11548-016-1395-2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11548-017-1627-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086101723
179 https://doi.org/10.1007/s11548-017-1627-0
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1001/jama.2014.17942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028579655
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.diii.2013.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016647424
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.eururo.2013.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019398945
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.eururo.2013.09.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045734133
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.juro.2013.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002426032
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.neunet.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013219854
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.urolonc.2011.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023980078
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0022-5347(05)00957-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047791600
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0022-5347(17)38664-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079183736
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0140-6736(16)32401-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053755600
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/72.557663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218866
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/bibm.2015.7359725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095299626
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tmi.2015.2427739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696530
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tmi.2018.2849959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105109902
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tuffc.2017.2785230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099878873
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1117/12.2255540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084716533
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1118/1.3457710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012662054
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1158/1078-0432.ccr-14-0247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015691384
216 rdf:type schema:CreativeWork
217 https://doi.org/10.21236/ada110902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091840451
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
220 schema:name The University of British Columbia, Vancouver, BC, Canada
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.263333.4 schema:alternateName Sejong University
223 schema:name Sejong University, Seoul, South Korea
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.33647.35 schema:alternateName Rensselaer Polytechnic Institute
226 schema:name Rensselaer Polytechnic Institute, Troy, NY, USA
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.410356.5 schema:alternateName Queen's University
229 schema:name Queen’s University, Kingston, ON, Canada
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.94365.3d schema:alternateName National Institutes of Health
232 schema:name The National Institutes of Health Research Center, Baltimore, MD, USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...