Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Alexander Effland, Erich Kobler, Anne Brandenburg, Teresa Klatzer, Leonie Neuhäuser, Michael Hölzel, Jennifer Landsberg, Thomas Pock, Martin Rumpf

ABSTRACT

PURPOSE: Cancers are almost always diagnosed by morphologic features in tissue sections. In this context, machine learning tools provide new opportunities to describe tumor immune cell interactions within the tumor microenvironment and thus provide phenotypic information that might be predictive for the response to immunotherapy. METHODS: We develop a machine learning approach using variational networks for joint image denoising and classification of tissue sections for melanoma, which is an established model tumor for immuno-oncology research. The manual annotation of real training data would require substantial user interaction of experienced pathologists for each single training image, and the training of larger networks would rely on a very large number of such data sets with ground truth annotation. To overcome this bottleneck, we synthesize training data together with a proper tissue structure classification. To this end, a stochastic data generation process is used to mimic cell morphology, cell distribution and tissue architecture in the tumor microenvironment. Particular components of this tool are random placement and rotation of a large number of patches for presegmented cell nuclei, a stochastic fast marching approach to mimic the geometry of cells and texture generation based on a color covariance analysis of real data. Here, the generated training data reflect a large range of interaction patterns. RESULTS: In several applications to histological tissue sections, we analyze the efficiency and accuracy of the proposed approach. As a result, depending on the scenario considered, almost all cells and nuclei which ought to be detected are actually marked as classified and hardly any misclassifications occur. CONCLUSIONS: The proposed method allows for a computer-aided screening of histological tissue sections utilizing variational networks with a particular emphasis on tumor immune cell interactions and on the robust cell nuclei classification. More... »

PAGES

587-599

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11548-019-01919-z

DOI

http://dx.doi.org/10.1007/s11548-019-01919-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112221014

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30779021


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute for Numerical Simulation, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Effland", 
        "givenName": "Alexander", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kobler", 
        "givenName": "Erich", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Department of Dermatology and Allergy, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brandenburg", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klatzer", 
        "givenName": "Teresa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute for Numerical Simulation, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neuh\u00e4user", 
        "givenName": "Leonie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6lzel", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Department of Dermatology and Allergy, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landsberg", 
        "givenName": "Jennifer", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pock", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute for Numerical Simulation, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rumpf", 
        "givenName": "Martin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001689247", 
          "https://doi.org/10.1038/nature11538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774818", 
          "https://doi.org/10.1007/978-3-319-24574-4_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020455470", 
          "https://doi.org/10.1038/nature13954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022567232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022567232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2153-3539.189703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022645160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-13-0458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028088139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030335345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2153-3539.186902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035284136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.02.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036778398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jmi.12090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041882096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.946629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2525803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2596743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-66709-6_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091259709", 
          "https://doi.org/10.1007/978-3-319-66709-6_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-66709-6_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091259709", 
          "https://doi.org/10.1007/978-3-319-66709-6_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-56537-7_86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101127082", 
          "https://doi.org/10.1007/978-3-662-56537-7_86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aar4060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101698084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2018.03.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103160854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2018.03.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103160854"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "PURPOSE: Cancers are almost always diagnosed by morphologic features in tissue sections. In this context, machine learning tools provide new opportunities to describe tumor immune cell interactions within the tumor microenvironment and thus provide phenotypic information that might be predictive for the response to immunotherapy.\nMETHODS: We develop a machine learning approach using variational networks for joint image denoising and classification of tissue sections for melanoma, which is an established model tumor for immuno-oncology research. The manual annotation of real training data would require substantial user interaction of experienced pathologists for each single training image, and the training of larger networks would rely on a very large number of such data sets with ground truth annotation. To overcome this bottleneck, we synthesize training data together with a proper tissue structure classification. To this end, a stochastic data generation process is used to mimic cell morphology, cell distribution and tissue architecture in the tumor microenvironment. Particular components of this tool are random placement and rotation of a large number of patches for presegmented cell nuclei, a stochastic fast marching approach to mimic the geometry of cells and texture generation based on a color covariance analysis of real data. Here, the generated training data reflect a large range of interaction patterns.\nRESULTS: In several applications to histological tissue sections, we analyze the efficiency and accuracy of the proposed approach. As a result, depending on the scenario considered, almost all cells and nuclei which ought to be detected are actually marked as classified and hardly any misclassifications occur.\nCONCLUSIONS: The proposed method allows for a computer-aided screening of histological tissue sections utilizing variational networks with a particular emphasis on tumor immune cell interactions and on the robust cell nuclei classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11548-019-01919-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4056990", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041191", 
        "issn": [
          "1861-6410", 
          "1861-6429"
        ], 
        "name": "International Journal of Computer Assisted Radiology and Surgery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data", 
    "pagination": "587-599", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11548-019-01919-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f4962e265b6e7edb62db516e585546a61c801be9fd8386f36d428f49bbea6d67"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112221014"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101499225"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30779021"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11548-019-01919-z", 
      "https://app.dimensions.ai/details/publication/pub.1112221014"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91469_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11548-019-01919-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01919-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01919-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01919-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-019-01919-z'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11548-019-01919-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N012754f82d5043719a3366c9225d5332
4 schema:citation sg:pub.10.1007/978-3-319-24574-4_28
5 sg:pub.10.1007/978-3-319-66709-6_23
6 sg:pub.10.1007/978-3-662-56537-7_86
7 sg:pub.10.1038/nature11538
8 sg:pub.10.1038/nature13954
9 https://doi.org/10.1016/j.cell.2016.02.065
10 https://doi.org/10.1016/j.celrep.2018.03.086
11 https://doi.org/10.1016/j.neucom.2016.01.034
12 https://doi.org/10.1109/38.946629
13 https://doi.org/10.1109/tmi.2016.2525803
14 https://doi.org/10.1109/tpami.2016.2596743
15 https://doi.org/10.1111/jmi.12090
16 https://doi.org/10.1126/science.aar4060
17 https://doi.org/10.1145/1390156.1390191
18 https://doi.org/10.1158/2159-8290.cd-13-0458
19 https://doi.org/10.4103/2153-3539.186902
20 https://doi.org/10.4103/2153-3539.189703
21 schema:datePublished 2019-04
22 schema:datePublishedReg 2019-04-01
23 schema:description PURPOSE: Cancers are almost always diagnosed by morphologic features in tissue sections. In this context, machine learning tools provide new opportunities to describe tumor immune cell interactions within the tumor microenvironment and thus provide phenotypic information that might be predictive for the response to immunotherapy. METHODS: We develop a machine learning approach using variational networks for joint image denoising and classification of tissue sections for melanoma, which is an established model tumor for immuno-oncology research. The manual annotation of real training data would require substantial user interaction of experienced pathologists for each single training image, and the training of larger networks would rely on a very large number of such data sets with ground truth annotation. To overcome this bottleneck, we synthesize training data together with a proper tissue structure classification. To this end, a stochastic data generation process is used to mimic cell morphology, cell distribution and tissue architecture in the tumor microenvironment. Particular components of this tool are random placement and rotation of a large number of patches for presegmented cell nuclei, a stochastic fast marching approach to mimic the geometry of cells and texture generation based on a color covariance analysis of real data. Here, the generated training data reflect a large range of interaction patterns. RESULTS: In several applications to histological tissue sections, we analyze the efficiency and accuracy of the proposed approach. As a result, depending on the scenario considered, almost all cells and nuclei which ought to be detected are actually marked as classified and hardly any misclassifications occur. CONCLUSIONS: The proposed method allows for a computer-aided screening of histological tissue sections utilizing variational networks with a particular emphasis on tumor immune cell interactions and on the robust cell nuclei classification.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N433a92a3b1694d97b0efee81f634e8cb
28 N8ca22662d9fd41a19cf2879ae9b9b2b3
29 sg:journal.1041191
30 schema:name Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data
31 schema:pagination 587-599
32 schema:productId N00dacb8b3a94462d9c7d0506e5988bd8
33 N34f9a3d616844f538e2cbabb2f9a464a
34 N7a3895bde6a74c338f47e6e555497922
35 Nbd6b65a236244a5b8ab87efeb87c5192
36 Ndbb098ed76b74a3a8c4003208a365424
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112221014
38 https://doi.org/10.1007/s11548-019-01919-z
39 schema:sdDatePublished 2019-04-15T09:04
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N29f78b9dfe664886866cb9c066d4e401
42 schema:url https://link.springer.com/10.1007%2Fs11548-019-01919-z
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N00dacb8b3a94462d9c7d0506e5988bd8 schema:name readcube_id
47 schema:value f4962e265b6e7edb62db516e585546a61c801be9fd8386f36d428f49bbea6d67
48 rdf:type schema:PropertyValue
49 N012754f82d5043719a3366c9225d5332 rdf:first Nafb6203f400c4f1fbfb24116ee666fd1
50 rdf:rest N76594ecc21e74f4bbe4819c3afca29ce
51 N09b22f70e07c4cf0ae3823b67cddf47b rdf:first Na77ad88219ab401ea834c1e8e2404318
52 rdf:rest N92a4d7e394664778914e28a97c588009
53 N29f78b9dfe664886866cb9c066d4e401 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N2ce82fa8a3ff47c485f7aa2c17ad162e rdf:first Nc13be65a947143c1836a6c3f9230b70e
56 rdf:rest rdf:nil
57 N34f9a3d616844f538e2cbabb2f9a464a schema:name doi
58 schema:value 10.1007/s11548-019-01919-z
59 rdf:type schema:PropertyValue
60 N433a92a3b1694d97b0efee81f634e8cb schema:issueNumber 4
61 rdf:type schema:PublicationIssue
62 N4538fe8bdd8944a885b9dd1355b63420 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
63 schema:familyName Pock
64 schema:givenName Thomas
65 rdf:type schema:Person
66 N60a33f89f39f43c8a8a6657bf008609c schema:affiliation https://www.grid.ac/institutes/grid.10388.32
67 schema:familyName Neuhäuser
68 schema:givenName Leonie
69 rdf:type schema:Person
70 N651a89e11ddf4b50aada039c5e1d9a33 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
71 schema:familyName Kobler
72 schema:givenName Erich
73 rdf:type schema:Person
74 N6fc3aafd0c2d465186dff58964754b66 rdf:first Na7cc672995314b33bb1e06b7720fa89b
75 rdf:rest N09b22f70e07c4cf0ae3823b67cddf47b
76 N74952922e1f846c4bb18461f146626d2 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
77 schema:familyName Klatzer
78 schema:givenName Teresa
79 rdf:type schema:Person
80 N76594ecc21e74f4bbe4819c3afca29ce rdf:first N651a89e11ddf4b50aada039c5e1d9a33
81 rdf:rest Nee03e58a7d154df9a3d7a1e47bc64ef6
82 N7a3895bde6a74c338f47e6e555497922 schema:name dimensions_id
83 schema:value pub.1112221014
84 rdf:type schema:PropertyValue
85 N89c824bf04344e779ed5041089ac9391 rdf:first N74952922e1f846c4bb18461f146626d2
86 rdf:rest N9314cafccb9045bb81dce5d2c6800c71
87 N8ca22662d9fd41a19cf2879ae9b9b2b3 schema:volumeNumber 14
88 rdf:type schema:PublicationVolume
89 N92a4d7e394664778914e28a97c588009 rdf:first N4538fe8bdd8944a885b9dd1355b63420
90 rdf:rest N2ce82fa8a3ff47c485f7aa2c17ad162e
91 N9314cafccb9045bb81dce5d2c6800c71 rdf:first N60a33f89f39f43c8a8a6657bf008609c
92 rdf:rest N6fc3aafd0c2d465186dff58964754b66
93 Na77ad88219ab401ea834c1e8e2404318 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
94 schema:familyName Landsberg
95 schema:givenName Jennifer
96 rdf:type schema:Person
97 Na7cc672995314b33bb1e06b7720fa89b schema:affiliation https://www.grid.ac/institutes/grid.10388.32
98 schema:familyName Hölzel
99 schema:givenName Michael
100 rdf:type schema:Person
101 Nafb6203f400c4f1fbfb24116ee666fd1 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
102 schema:familyName Effland
103 schema:givenName Alexander
104 rdf:type schema:Person
105 Nbd6b65a236244a5b8ab87efeb87c5192 schema:name pubmed_id
106 schema:value 30779021
107 rdf:type schema:PropertyValue
108 Nc0cc3935d6d14dfca74dc6ca01f234e5 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
109 schema:familyName Brandenburg
110 schema:givenName Anne
111 rdf:type schema:Person
112 Nc13be65a947143c1836a6c3f9230b70e schema:affiliation https://www.grid.ac/institutes/grid.10388.32
113 schema:familyName Rumpf
114 schema:givenName Martin
115 rdf:type schema:Person
116 Ndbb098ed76b74a3a8c4003208a365424 schema:name nlm_unique_id
117 schema:value 101499225
118 rdf:type schema:PropertyValue
119 Nee03e58a7d154df9a3d7a1e47bc64ef6 rdf:first Nc0cc3935d6d14dfca74dc6ca01f234e5
120 rdf:rest N89c824bf04344e779ed5041089ac9391
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 sg:grant.4056990 http://pending.schema.org/fundedItem sg:pub.10.1007/s11548-019-01919-z
128 rdf:type schema:MonetaryGrant
129 sg:journal.1041191 schema:issn 1861-6410
130 1861-6429
131 schema:name International Journal of Computer Assisted Radiology and Surgery
132 rdf:type schema:Periodical
133 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
134 https://doi.org/10.1007/978-3-319-24574-4_28
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-319-66709-6_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091259709
137 https://doi.org/10.1007/978-3-319-66709-6_23
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-662-56537-7_86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101127082
140 https://doi.org/10.1007/978-3-662-56537-7_86
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature11538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001689247
143 https://doi.org/10.1038/nature11538
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature13954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020455470
146 https://doi.org/10.1038/nature13954
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.cell.2016.02.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036778398
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.celrep.2018.03.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103160854
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.neucom.2016.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022567232
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/38.946629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164348
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tmi.2016.2525803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696689
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tpami.2016.2596743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745137
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/jmi.12090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041882096
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.aar4060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101698084
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/1390156.1390191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030335345
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1158/2159-8290.cd-13-0458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028088139
167 rdf:type schema:CreativeWork
168 https://doi.org/10.4103/2153-3539.186902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035284136
169 rdf:type schema:CreativeWork
170 https://doi.org/10.4103/2153-3539.189703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022645160
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.10388.32 schema:alternateName University of Bonn
173 schema:name Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
174 Institute for Numerical Simulation, University of Bonn, Bonn, Germany
175 Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
178 schema:name Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...