Semiautomatic neck curve reconstruction for intracranial aneurysm rupture risk assessment based on morphological parameters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Sylvia Saalfeld, Philipp Berg, Annika Niemann, Maria Luz, Bernhard Preim, Oliver Beuing

ABSTRACT

PURPOSE: Morphological parameters of intracranial aneurysms (IAs) are well established for rupture risk assessment. However, a manual measurement is error-prone, not reproducible and cumbersome. For an automatic extraction of morphological parameters, a 3D neck curve reconstruction approach to delineate the aneurysm from the parent vessel is required. METHODS: We present a 3D semiautomatic aneurysm neck curve reconstruction for the automatic extraction of morphological parameters which was developed and evaluated with an experienced neuroradiologist. We calculate common parameters from the literature and include two novel angle-based parameters: the characteristic dome point angle and the angle difference of base points. RESULTS: We applied our method to 100 IAs acquired with rotational angiography in clinical routine. For validation, we compared our approach to manual segmentations yielding highly significant correlations. We analyzed 95 of these datasets regarding rupture state. Statistically significant differences were found in ruptured and unruptured groups for maximum diameter, maximum height, aspect ratio and the characteristic dome point angle. These parameters were also found to statistically significantly correlate with each other. CONCLUSIONS: The new 3D neck curve reconstruction provides robust results for all datasets. The reproducibility depends on the vessel tree centerline and the user input for the initial dome point and parameters characterizing the aneurysm neck region. The characteristic dome point angle as a new metric regarding rupture risk assessment can be extracted. It requires less computational effort than the complete neck curve reconstruction. More... »

PAGES

1781-1793

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11548-018-1848-x

DOI

http://dx.doi.org/10.1007/s11548-018-1848-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106416120

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30159832


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Department of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany", 
            "Research Campus STIMULATE, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saalfeld", 
        "givenName": "Sylvia", 
        "id": "sg:person.013543476413.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543476413.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Department of Fluid Dynamics and Technical Flows, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany", 
            "Research Campus STIMULATE, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berg", 
        "givenName": "Philipp", 
        "id": "sg:person.01235124217.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235124217.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Department of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niemann", 
        "givenName": "Annika", 
        "id": "sg:person.015720143504.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720143504.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Department of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luz", 
        "givenName": "Maria", 
        "id": "sg:person.011522426703.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522426703.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otto-von-Guericke University Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Department of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany", 
            "Research Campus STIMULATE, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preim", 
        "givenName": "Bernhard", 
        "id": "sg:person.01232365003.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232365003.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4tsaugenklinik Magdeburg", 
          "id": "https://www.grid.ac/institutes/grid.488575.3", 
          "name": [
            "Department of Neuroradiology, University Hospital of Magdeburg, Magdeburg, Germany", 
            "Research Campus STIMULATE, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beuing", 
        "givenName": "Oliver", 
        "id": "sg:person.0642732412.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642732412.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.acra.2012.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000131849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/neu.0b013e3182503bf9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002930291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.112.675306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003441764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.112.675306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003441764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.112.675306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003441764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007470007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007470007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007470007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bmt-2012-0119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012322117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cgf.12112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018762410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-012-1003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021633925", 
          "https://doi.org/10.1007/s11517-012-1003-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cdbme-2016-0148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025593350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a3558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027873892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033048752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716633", 
          "https://doi.org/10.1007/bf01386390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24571-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043706863", 
          "https://doi.org/10.1007/978-3-319-24571-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/01.neu.0000298899.77097.bf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045083583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.592923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049624581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.592923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049624581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.004421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.004421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-012-0779-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051275057", 
          "https://doi.org/10.1007/s11548-012-0779-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:abme.0000012746.31343.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051822214", 
          "https://doi.org/10.1023/b:abme.0000012746.31343.92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-008-0420-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053377330", 
          "https://doi.org/10.1007/s11517-008-0420-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/01.neu.0000316847.64140.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053504530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2157698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2003.99.3.0447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071100890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2003.99.3.0447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071100890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2003.99.3.0447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071100890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2003.99.3.0447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071100890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2005.102.2.0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071101450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2005.102.2.0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071101450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2005.102.2.0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071101450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076879389", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/neurintsurg-2017-012996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085311736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/neurintsurg-2017-012996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085311736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-017-1643-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090856008", 
          "https://doi.org/10.1007/s11548-017-1643-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-017-1643-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090856008", 
          "https://doi.org/10.1007/s11548-017-1643-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091787265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091787265"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "PURPOSE: Morphological parameters of intracranial aneurysms (IAs) are well established for rupture risk assessment. However, a manual measurement is error-prone, not reproducible and cumbersome. For an automatic extraction of morphological parameters, a 3D neck curve reconstruction approach to delineate the aneurysm from the parent vessel is required.\nMETHODS: We present a 3D semiautomatic aneurysm neck curve reconstruction for the automatic extraction of morphological parameters which was developed and evaluated with an experienced neuroradiologist. We calculate common parameters from the literature and include two novel angle-based parameters: the characteristic dome point angle and the angle difference of base points.\nRESULTS: We applied our method to 100 IAs acquired with rotational angiography in clinical routine. For validation, we compared our approach to manual segmentations yielding highly significant correlations. We analyzed 95 of these datasets regarding rupture state. Statistically significant differences were found in ruptured and unruptured groups for maximum diameter, maximum height, aspect ratio and the characteristic dome point angle. These parameters were also found to statistically significantly correlate with each other.\nCONCLUSIONS: The new 3D neck curve reconstruction provides robust results for all datasets. The reproducibility depends on the vessel tree centerline and the user input for the initial dome point and parameters characterizing the aneurysm neck region. The characteristic dome point angle as a new metric regarding rupture risk assessment can be extracted. It requires less computational effort than the complete neck curve reconstruction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11548-018-1848-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041191", 
        "issn": [
          "1861-6410", 
          "1861-6429"
        ], 
        "name": "International Journal of Computer Assisted Radiology and Surgery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Semiautomatic neck curve reconstruction for intracranial aneurysm rupture risk assessment based on morphological parameters", 
    "pagination": "1781-1793", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c885108cecefd57d4a9f72ff4d24b5e2b4c22d1def759e8c3ca72c7cfd746b70"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30159832"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101499225"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11548-018-1848-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106416120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11548-018-1848-x", 
      "https://app.dimensions.ai/details/publication/pub.1106416120"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000564.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11548-018-1848-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1848-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1848-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1848-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1848-x'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11548-018-1848-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N405068d9117e4639bb575e49c2eb70c5
4 schema:citation sg:pub.10.1007/978-3-319-24571-3_1
5 sg:pub.10.1007/bf01386390
6 sg:pub.10.1007/s11517-008-0420-1
7 sg:pub.10.1007/s11517-012-1003-8
8 sg:pub.10.1007/s11548-012-0779-1
9 sg:pub.10.1007/s11548-017-1643-0
10 sg:pub.10.1023/b:abme.0000012746.31343.92
11 https://app.dimensions.ai/details/publication/pub.1076879389
12 https://doi.org/10.1016/j.acra.2012.02.012
13 https://doi.org/10.1109/tmi.2011.2157698
14 https://doi.org/10.1111/cgf.12112
15 https://doi.org/10.1136/neurintsurg-2017-012996
16 https://doi.org/10.1161/strokeaha.110.592923
17 https://doi.org/10.1161/strokeaha.112.675306
18 https://doi.org/10.1161/strokeaha.113.004421
19 https://doi.org/10.1227/01.neu.0000298899.77097.bf
20 https://doi.org/10.1227/01.neu.0000316847.64140.81
21 https://doi.org/10.1227/neu.0b013e3182503bf9
22 https://doi.org/10.1371/journal.pone.0149906
23 https://doi.org/10.1515/bmt-2012-0119
24 https://doi.org/10.1515/cdbme-2016-0148
25 https://doi.org/10.3171/jns.2003.99.3.0447
26 https://doi.org/10.3171/jns.2005.102.2.0355
27 https://doi.org/10.3174/ajnr.a2419
28 https://doi.org/10.3174/ajnr.a3558
29 https://doi.org/10.3174/ajnr.a5341
30 schema:datePublished 2018-11
31 schema:datePublishedReg 2018-11-01
32 schema:description PURPOSE: Morphological parameters of intracranial aneurysms (IAs) are well established for rupture risk assessment. However, a manual measurement is error-prone, not reproducible and cumbersome. For an automatic extraction of morphological parameters, a 3D neck curve reconstruction approach to delineate the aneurysm from the parent vessel is required. METHODS: We present a 3D semiautomatic aneurysm neck curve reconstruction for the automatic extraction of morphological parameters which was developed and evaluated with an experienced neuroradiologist. We calculate common parameters from the literature and include two novel angle-based parameters: the characteristic dome point angle and the angle difference of base points. RESULTS: We applied our method to 100 IAs acquired with rotational angiography in clinical routine. For validation, we compared our approach to manual segmentations yielding highly significant correlations. We analyzed 95 of these datasets regarding rupture state. Statistically significant differences were found in ruptured and unruptured groups for maximum diameter, maximum height, aspect ratio and the characteristic dome point angle. These parameters were also found to statistically significantly correlate with each other. CONCLUSIONS: The new 3D neck curve reconstruction provides robust results for all datasets. The reproducibility depends on the vessel tree centerline and the user input for the initial dome point and parameters characterizing the aneurysm neck region. The characteristic dome point angle as a new metric regarding rupture risk assessment can be extracted. It requires less computational effort than the complete neck curve reconstruction.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N3e789b35897745abbae9dbd145b5e050
37 N72d5417900554fa3824db1261767957b
38 sg:journal.1041191
39 schema:name Semiautomatic neck curve reconstruction for intracranial aneurysm rupture risk assessment based on morphological parameters
40 schema:pagination 1781-1793
41 schema:productId N60cfe8e2acb14615b28b120d5f79a507
42 N70bd9090db2042ca813a4b586b7264ca
43 Na2b4200531144a9ea423e2843dba138c
44 Nbae8ac20be8e4c449f616477c44bd837
45 Nd9e91c3f2a7944a88110bbf010e3f18d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106416120
47 https://doi.org/10.1007/s11548-018-1848-x
48 schema:sdDatePublished 2019-04-11T00:25
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N2e6e631154ab47f89c0a1cad9d46c45d
51 schema:url https://link.springer.com/10.1007%2Fs11548-018-1848-x
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N070d16c332e143359da939d0fb94862b rdf:first sg:person.0642732412.74
56 rdf:rest rdf:nil
57 N24fe4f5afffc4b6a99232de46868bb33 rdf:first sg:person.015720143504.80
58 rdf:rest Nf82dc2a2259c4e3e847a581fc0b54c47
59 N2e6e631154ab47f89c0a1cad9d46c45d schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N3e789b35897745abbae9dbd145b5e050 schema:volumeNumber 13
62 rdf:type schema:PublicationVolume
63 N405068d9117e4639bb575e49c2eb70c5 rdf:first sg:person.013543476413.84
64 rdf:rest N65bc7decdd984e3f8e110e57bd56bbd2
65 N60cfe8e2acb14615b28b120d5f79a507 schema:name dimensions_id
66 schema:value pub.1106416120
67 rdf:type schema:PropertyValue
68 N65bc7decdd984e3f8e110e57bd56bbd2 rdf:first sg:person.01235124217.27
69 rdf:rest N24fe4f5afffc4b6a99232de46868bb33
70 N70bd9090db2042ca813a4b586b7264ca schema:name doi
71 schema:value 10.1007/s11548-018-1848-x
72 rdf:type schema:PropertyValue
73 N72d5417900554fa3824db1261767957b schema:issueNumber 11
74 rdf:type schema:PublicationIssue
75 N86e9fe1765ce4e5faacebe3ca9b7da36 rdf:first sg:person.01232365003.52
76 rdf:rest N070d16c332e143359da939d0fb94862b
77 Na2b4200531144a9ea423e2843dba138c schema:name readcube_id
78 schema:value c885108cecefd57d4a9f72ff4d24b5e2b4c22d1def759e8c3ca72c7cfd746b70
79 rdf:type schema:PropertyValue
80 Nbae8ac20be8e4c449f616477c44bd837 schema:name nlm_unique_id
81 schema:value 101499225
82 rdf:type schema:PropertyValue
83 Nd9e91c3f2a7944a88110bbf010e3f18d schema:name pubmed_id
84 schema:value 30159832
85 rdf:type schema:PropertyValue
86 Nf82dc2a2259c4e3e847a581fc0b54c47 rdf:first sg:person.011522426703.70
87 rdf:rest N86e9fe1765ce4e5faacebe3ca9b7da36
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:journal.1041191 schema:issn 1861-6410
95 1861-6429
96 schema:name International Journal of Computer Assisted Radiology and Surgery
97 rdf:type schema:Periodical
98 sg:person.011522426703.70 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
99 schema:familyName Luz
100 schema:givenName Maria
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522426703.70
102 rdf:type schema:Person
103 sg:person.01232365003.52 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
104 schema:familyName Preim
105 schema:givenName Bernhard
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232365003.52
107 rdf:type schema:Person
108 sg:person.01235124217.27 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
109 schema:familyName Berg
110 schema:givenName Philipp
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235124217.27
112 rdf:type schema:Person
113 sg:person.013543476413.84 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
114 schema:familyName Saalfeld
115 schema:givenName Sylvia
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543476413.84
117 rdf:type schema:Person
118 sg:person.015720143504.80 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
119 schema:familyName Niemann
120 schema:givenName Annika
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720143504.80
122 rdf:type schema:Person
123 sg:person.0642732412.74 schema:affiliation https://www.grid.ac/institutes/grid.488575.3
124 schema:familyName Beuing
125 schema:givenName Oliver
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642732412.74
127 rdf:type schema:Person
128 sg:pub.10.1007/978-3-319-24571-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043706863
129 https://doi.org/10.1007/978-3-319-24571-3_1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
132 https://doi.org/10.1007/bf01386390
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11517-008-0420-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053377330
135 https://doi.org/10.1007/s11517-008-0420-1
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11517-012-1003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021633925
138 https://doi.org/10.1007/s11517-012-1003-8
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11548-012-0779-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051275057
141 https://doi.org/10.1007/s11548-012-0779-1
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11548-017-1643-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090856008
144 https://doi.org/10.1007/s11548-017-1643-0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1023/b:abme.0000012746.31343.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051822214
147 https://doi.org/10.1023/b:abme.0000012746.31343.92
148 rdf:type schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1076879389 schema:CreativeWork
150 https://doi.org/10.1016/j.acra.2012.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000131849
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tmi.2011.2157698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695757
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/cgf.12112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018762410
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1136/neurintsurg-2017-012996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085311736
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1161/strokeaha.110.592923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624581
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1161/strokeaha.112.675306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003441764
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1161/strokeaha.113.004421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049890593
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1227/01.neu.0000298899.77097.bf schema:sameAs https://app.dimensions.ai/details/publication/pub.1045083583
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1227/01.neu.0000316847.64140.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053504530
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1227/neu.0b013e3182503bf9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002930291
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1371/journal.pone.0149906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007470007
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1515/bmt-2012-0119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012322117
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1515/cdbme-2016-0148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025593350
175 rdf:type schema:CreativeWork
176 https://doi.org/10.3171/jns.2003.99.3.0447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071100890
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3171/jns.2005.102.2.0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071101450
179 rdf:type schema:CreativeWork
180 https://doi.org/10.3174/ajnr.a2419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033048752
181 rdf:type schema:CreativeWork
182 https://doi.org/10.3174/ajnr.a3558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027873892
183 rdf:type schema:CreativeWork
184 https://doi.org/10.3174/ajnr.a5341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091787265
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.488575.3 schema:alternateName Universitätsaugenklinik Magdeburg
187 schema:name Department of Neuroradiology, University Hospital of Magdeburg, Magdeburg, Germany
188 Research Campus STIMULATE, Magdeburg, Germany
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.5807.a schema:alternateName Otto-von-Guericke University Magdeburg
191 schema:name Department of Fluid Dynamics and Technical Flows, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
192 Department of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
193 Research Campus STIMULATE, Magdeburg, Germany
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...