Extraction of open-state mitral valve geometry from CT volumes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Lennart Tautz, Mathias Neugebauer, Markus Hüllebrand, Katharina Vellguth, Franziska Degener, Simon Sündermann, Isaac Wamala, Leonid Goubergrits, Titus Kuehne, Volkmar Falk, Anja Hennemuth

ABSTRACT

PURPOSE: The importance of mitral valve therapies is rising due to an aging population. Visualization and quantification of the valve anatomy from image acquisitions is an essential component of surgical and interventional planning. The segmentation of the mitral valve from computed tomography (CT) acquisitions is challenging due to high variation in appearance and visibility across subjects. We present a novel semi-automatic approach to segment the open-state valve in 3D CT volumes that combines user-defined landmarks to an initial valve model which is automatically adapted to the image information, even if the image data provide only partial visibility of the valve. METHODS: Context information and automatic view initialization are derived from segmentation of the left heart lumina, which incorporates topological, shape and regional information. The valve model is initialized with user-defined landmarks in views generated from the context segmentation and then adapted to the image data in an active surface approach guided by landmarks derived from sheetness analysis. The resulting model is refined by user landmarks. RESULTS: For evaluation, three clinicians segmented the open valve in 10 CT volumes of patients with mitral valve insufficiency. Despite notable differences in landmark definition, the resulting valve meshes were overall similar in appearance, with a mean surface distance of [Formula: see text] mm. Each volume could be segmented in 5-22 min. CONCLUSIONS: Our approach enables an expert user to easily segment the open mitral valve in CT data, even when image noise or low contrast limits the visibility of the valve. More... »

PAGES

1741-1754

References to SciGraph publications

  • 2015. Multi-modal Validation Framework of Mitral Valve Geometry and Functional Computational Models in STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART - IMAGING AND MODELLING CHALLENGES
  • 2008-11. An image-based modeling framework for patient-specific computational hemodynamics in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2018-04. Multi-resolution geometric modeling of the mitral heart valve leaflets in BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
  • 2017-02. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions in ANNALS OF BIOMEDICAL ENGINEERING
  • 2016-12. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease in JOURNAL OF DIGITAL IMAGING
  • 2013-01. Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans in ANNALS OF BIOMEDICAL ENGINEERING
  • 2017-02. Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization in ANNALS OF BIOMEDICAL ENGINEERING
  • 2011-06. Mitral Valve Patient-Specific Finite Element Modeling from Cardiac MRI: Application to an Annuloplasty Procedure in CARDIOVASCULAR ENGINEERING AND TECHNOLOGY
  • 2016-04. Fluid–Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure in ANNALS OF BIOMEDICAL ENGINEERING
  • 2018. Multi-Planar Deep Segmentation Networks for Cardiac Substructures from MRI and CT in STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. ACDC AND MMWHS CHALLENGES
  • 2014-07. Using a shape prior for robust modeling of the mitral annulus on 4D ultrasound data in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • 2014-12. Automatic image-based segmentation of the heart from CT scans in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11548-018-1831-6

    DOI

    http://dx.doi.org/10.1007/s11548-018-1831-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105978885

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30074135


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Charit\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Fraunhofer MEVIS, Bremen, Germany", 
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tautz", 
            "givenName": "Lennart", 
            "id": "sg:person.01044130121.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044130121.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer MEVIS", 
              "id": "https://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer MEVIS, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neugebauer", 
            "givenName": "Mathias", 
            "id": "sg:person.01366336512.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366336512.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charit\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Fraunhofer MEVIS, Bremen, Germany", 
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00fcllebrand", 
            "givenName": "Markus", 
            "id": "sg:person.01273737554.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273737554.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charit\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vellguth", 
            "givenName": "Katharina", 
            "id": "sg:person.011175710414.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175710414.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Deutsches Herzzentrum Berlin", 
              "id": "https://www.grid.ac/institutes/grid.418209.6", 
              "name": [
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
                "German Heart Institute Berlin - DHZB, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Degener", 
            "givenName": "Franziska", 
            "id": "sg:person.01032664776.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032664776.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Deutsches Herzzentrum Berlin", 
              "id": "https://www.grid.ac/institutes/grid.418209.6", 
              "name": [
                "German Heart Institute Berlin - DHZB, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00fcndermann", 
            "givenName": "Simon", 
            "id": "sg:person.01026773527.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026773527.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Deutsches Herzzentrum Berlin", 
              "id": "https://www.grid.ac/institutes/grid.418209.6", 
              "name": [
                "German Heart Institute Berlin - DHZB, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wamala", 
            "givenName": "Isaac", 
            "id": "sg:person.01230456217.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230456217.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charit\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goubergrits", 
            "givenName": "Leonid", 
            "id": "sg:person.0764721324.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764721324.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Deutsches Herzzentrum Berlin", 
              "id": "https://www.grid.ac/institutes/grid.418209.6", 
              "name": [
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
                "German Heart Institute Berlin - DHZB, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuehne", 
            "givenName": "Titus", 
            "id": "sg:person.01075751376.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075751376.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Deutsches Herzzentrum Berlin", 
              "id": "https://www.grid.ac/institutes/grid.418209.6", 
              "name": [
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
                "German Heart Institute Berlin - DHZB, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Falk", 
            "givenName": "Volkmar", 
            "id": "sg:person.0747301606.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747301606.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charit\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Fraunhofer MEVIS, Bremen, Germany", 
                "Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hennemuth", 
            "givenName": "Anja", 
            "id": "sg:person.01071257343.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071257343.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1161/cir.0000000000000366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000419428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/cir.0000000000000366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000419428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/cir.0000000000000366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000419428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/10929080601017212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000508518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13239-010-0032-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000716859", 
              "https://doi.org/10.1007/s13239-010-0032-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2012.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005059307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2011.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008917344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1687-5281-2014-52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009265928", 
              "https://doi.org/10.1186/1687-5281-2014-52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2013.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010222685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcmg.2014.07.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012174408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2012.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013815988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcmg.2007.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014046623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2008.0095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016357907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2016.03.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017057969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2016.03.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019157288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-016-1775-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019783570", 
              "https://doi.org/10.1007/s10439-016-1775-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-016-1775-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019783570", 
              "https://doi.org/10.1007/s10439-016-1775-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cjca.2014.03.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025938309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.athoracsur.2010.02.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028979194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2011.11.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032933451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-015-1385-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033556914", 
              "https://doi.org/10.1007/s10439-015-1385-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10278-016-9879-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033888224", 
              "https://doi.org/10.1007/s10278-016-9879-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.88.2.548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038355301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-016-1676-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040139813", 
              "https://doi.org/10.1007/s10439-016-1676-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-016-1676-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040139813", 
              "https://doi.org/10.1007/s10439-016-1676-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-012-0620-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045493478", 
              "https://doi.org/10.1007/s10439-012-0620-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3512795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048480020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2012.10.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048981569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-013-0942-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049649046", 
              "https://doi.org/10.1007/s11548-013-0942-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14678-2_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051700863", 
              "https://doi.org/10.1007/978-3-319-14678-2_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-008-0420-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053377330", 
              "https://doi.org/10.1007/s11517-008-0420-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10929080601017212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058378002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/eurheartj/ehv322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059576631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mpul.2011.942929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061418953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2010.2048756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2010.2050595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2012.2219881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15347/wjm/2014.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067741288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082603057", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-0037-1606603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091756998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10237-017-0965-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092101138", 
              "https://doi.org/10.1007/s10237-017-0965-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10237-017-0965-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092101138", 
              "https://doi.org/10.1007/s10237-017-0965-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10237-017-0965-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092101138", 
              "https://doi.org/10.1007/s10237-017-0965-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-75541-0_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101529451", 
              "https://doi.org/10.1007/978-3-319-75541-0_21"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "PURPOSE: The importance of mitral valve therapies is rising due to an aging population. Visualization and quantification of the valve anatomy from image acquisitions is an essential component of surgical and interventional planning. The segmentation of the mitral valve from computed tomography (CT) acquisitions is challenging due to high variation in appearance and visibility across subjects. We present a novel semi-automatic approach to segment the open-state valve in 3D CT volumes that combines user-defined landmarks to an initial valve model which is automatically adapted to the image information, even if the image data provide only partial visibility of the valve.\nMETHODS: Context information and automatic view initialization are derived from segmentation of the left heart lumina, which incorporates topological, shape and regional information. The valve model is initialized with user-defined landmarks in views generated from the context segmentation and then adapted to the image data in an active surface approach guided by landmarks derived from sheetness analysis. The resulting model is refined by user landmarks.\nRESULTS: For evaluation, three clinicians segmented the open valve in 10 CT volumes of patients with mitral valve insufficiency. Despite notable differences in landmark definition, the resulting valve meshes were overall similar in appearance, with a mean surface distance of [Formula: see text] mm. Each volume could be segmented in 5-22\u00a0min.\nCONCLUSIONS: Our approach enables an expert user to easily segment the open mitral valve in CT data, even when image noise or low contrast limits the visibility of the valve.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11548-018-1831-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041191", 
            "issn": [
              "1861-6410", 
              "1861-6429"
            ], 
            "name": "International Journal of Computer Assisted Radiology and Surgery", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Extraction of open-state mitral valve geometry from CT volumes", 
        "pagination": "1741-1754", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "abaa1fe207752cd084d3494e8bec3f38ec819b12da1091a9fa0037791736e51f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30074135"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101499225"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11548-018-1831-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105978885"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11548-018-1831-6", 
          "https://app.dimensions.ai/details/publication/pub.1105978885"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000564.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11548-018-1831-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1831-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1831-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1831-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1831-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    272 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11548-018-1831-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N661a362b8e774280828beb9bbb00fd5c
    4 schema:citation sg:pub.10.1007/978-3-319-14678-2_25
    5 sg:pub.10.1007/978-3-319-75541-0_21
    6 sg:pub.10.1007/s10237-017-0965-8
    7 sg:pub.10.1007/s10278-016-9879-8
    8 sg:pub.10.1007/s10439-012-0620-6
    9 sg:pub.10.1007/s10439-015-1385-5
    10 sg:pub.10.1007/s10439-016-1676-5
    11 sg:pub.10.1007/s10439-016-1775-3
    12 sg:pub.10.1007/s11517-008-0420-1
    13 sg:pub.10.1007/s11548-013-0942-3
    14 sg:pub.10.1007/s13239-010-0032-4
    15 sg:pub.10.1186/1687-5281-2014-52
    16 https://app.dimensions.ai/details/publication/pub.1082603057
    17 https://doi.org/10.1016/j.athoracsur.2010.02.036
    18 https://doi.org/10.1016/j.cjca.2014.03.022
    19 https://doi.org/10.1016/j.jbiomech.2011.11.033
    20 https://doi.org/10.1016/j.jbiomech.2012.10.026
    21 https://doi.org/10.1016/j.jcmg.2007.11.005
    22 https://doi.org/10.1016/j.jcmg.2014.07.028
    23 https://doi.org/10.1016/j.media.2011.11.006
    24 https://doi.org/10.1016/j.media.2012.02.003
    25 https://doi.org/10.1016/j.media.2012.05.009
    26 https://doi.org/10.1016/j.media.2013.10.001
    27 https://doi.org/10.1016/j.media.2016.03.011
    28 https://doi.org/10.1016/j.neucom.2016.03.106
    29 https://doi.org/10.1055/s-0037-1606603
    30 https://doi.org/10.1080/10929080601017212
    31 https://doi.org/10.1093/eurheartj/ehv322
    32 https://doi.org/10.1098/rsta.2008.0095
    33 https://doi.org/10.1109/mpul.2011.942929
    34 https://doi.org/10.1109/tmi.2010.2048756
    35 https://doi.org/10.1109/tmi.2010.2050595
    36 https://doi.org/10.1109/tmi.2012.2219881
    37 https://doi.org/10.1118/1.3512795
    38 https://doi.org/10.1161/01.cir.88.2.548
    39 https://doi.org/10.1161/cir.0000000000000366
    40 https://doi.org/10.15347/wjm/2014.010
    41 https://doi.org/10.3109/10929080601017212
    42 schema:datePublished 2018-11
    43 schema:datePublishedReg 2018-11-01
    44 schema:description PURPOSE: The importance of mitral valve therapies is rising due to an aging population. Visualization and quantification of the valve anatomy from image acquisitions is an essential component of surgical and interventional planning. The segmentation of the mitral valve from computed tomography (CT) acquisitions is challenging due to high variation in appearance and visibility across subjects. We present a novel semi-automatic approach to segment the open-state valve in 3D CT volumes that combines user-defined landmarks to an initial valve model which is automatically adapted to the image information, even if the image data provide only partial visibility of the valve. METHODS: Context information and automatic view initialization are derived from segmentation of the left heart lumina, which incorporates topological, shape and regional information. The valve model is initialized with user-defined landmarks in views generated from the context segmentation and then adapted to the image data in an active surface approach guided by landmarks derived from sheetness analysis. The resulting model is refined by user landmarks. RESULTS: For evaluation, three clinicians segmented the open valve in 10 CT volumes of patients with mitral valve insufficiency. Despite notable differences in landmark definition, the resulting valve meshes were overall similar in appearance, with a mean surface distance of [Formula: see text] mm. Each volume could be segmented in 5-22 min. CONCLUSIONS: Our approach enables an expert user to easily segment the open mitral valve in CT data, even when image noise or low contrast limits the visibility of the valve.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N238956c09baa46d5b459545c78d443b6
    49 Nc1a551011c8346e8af8d29d0f20c2ca4
    50 sg:journal.1041191
    51 schema:name Extraction of open-state mitral valve geometry from CT volumes
    52 schema:pagination 1741-1754
    53 schema:productId N292fe587193b4946a801245f7cfa1135
    54 N8a600b578cce442fa7b6f8bb865ff5bb
    55 N9f79989576b942bc975601aadaf67ab3
    56 Nc1fb98b2d93b4418859231658c673964
    57 Nfb59f36ae14241068ad35a7f5def89ba
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105978885
    59 https://doi.org/10.1007/s11548-018-1831-6
    60 schema:sdDatePublished 2019-04-10T15:09
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N3ee278bffafe4d06a0fd15785611e3ce
    63 schema:url https://link.springer.com/10.1007%2Fs11548-018-1831-6
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N0ceecd6c4d4741c790211e68943e792c rdf:first sg:person.01075751376.37
    68 rdf:rest N6cebd65e4b10463680beb2b450d74f0c
    69 N238956c09baa46d5b459545c78d443b6 schema:issueNumber 11
    70 rdf:type schema:PublicationIssue
    71 N292fe587193b4946a801245f7cfa1135 schema:name doi
    72 schema:value 10.1007/s11548-018-1831-6
    73 rdf:type schema:PropertyValue
    74 N3839ee366a704fa4b03a8b2a5f9354b4 rdf:first sg:person.01026773527.66
    75 rdf:rest Nf149b2a7a4f14abdb04359396e1b0c71
    76 N3ee278bffafe4d06a0fd15785611e3ce schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N4dc2962af12f44c297c1dd1ec2f1da08 rdf:first sg:person.01032664776.10
    79 rdf:rest N3839ee366a704fa4b03a8b2a5f9354b4
    80 N566dfa7ebbf042f18b9c27d49ed8a26a rdf:first sg:person.01366336512.56
    81 rdf:rest N5a25949420cd477faab4bbe6da13b2b7
    82 N5a25949420cd477faab4bbe6da13b2b7 rdf:first sg:person.01273737554.14
    83 rdf:rest Nedf3553c8ae44c838721a1c20b08fe47
    84 N661a362b8e774280828beb9bbb00fd5c rdf:first sg:person.01044130121.32
    85 rdf:rest N566dfa7ebbf042f18b9c27d49ed8a26a
    86 N6cebd65e4b10463680beb2b450d74f0c rdf:first sg:person.0747301606.13
    87 rdf:rest N928a794671cb443c9b707898237127a3
    88 N8a600b578cce442fa7b6f8bb865ff5bb schema:name dimensions_id
    89 schema:value pub.1105978885
    90 rdf:type schema:PropertyValue
    91 N928a794671cb443c9b707898237127a3 rdf:first sg:person.01071257343.13
    92 rdf:rest rdf:nil
    93 N9f79989576b942bc975601aadaf67ab3 schema:name pubmed_id
    94 schema:value 30074135
    95 rdf:type schema:PropertyValue
    96 Nb260d6311b53468d8b50fc791ef976d8 rdf:first sg:person.0764721324.11
    97 rdf:rest N0ceecd6c4d4741c790211e68943e792c
    98 Nc1a551011c8346e8af8d29d0f20c2ca4 schema:volumeNumber 13
    99 rdf:type schema:PublicationVolume
    100 Nc1fb98b2d93b4418859231658c673964 schema:name nlm_unique_id
    101 schema:value 101499225
    102 rdf:type schema:PropertyValue
    103 Nedf3553c8ae44c838721a1c20b08fe47 rdf:first sg:person.011175710414.21
    104 rdf:rest N4dc2962af12f44c297c1dd1ec2f1da08
    105 Nf149b2a7a4f14abdb04359396e1b0c71 rdf:first sg:person.01230456217.60
    106 rdf:rest Nb260d6311b53468d8b50fc791ef976d8
    107 Nfb59f36ae14241068ad35a7f5def89ba schema:name readcube_id
    108 schema:value abaa1fe207752cd084d3494e8bec3f38ec819b12da1091a9fa0037791736e51f
    109 rdf:type schema:PropertyValue
    110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Information and Computing Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Artificial Intelligence and Image Processing
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1041191 schema:issn 1861-6410
    117 1861-6429
    118 schema:name International Journal of Computer Assisted Radiology and Surgery
    119 rdf:type schema:Periodical
    120 sg:person.01026773527.66 schema:affiliation https://www.grid.ac/institutes/grid.418209.6
    121 schema:familyName Sündermann
    122 schema:givenName Simon
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026773527.66
    124 rdf:type schema:Person
    125 sg:person.01032664776.10 schema:affiliation https://www.grid.ac/institutes/grid.418209.6
    126 schema:familyName Degener
    127 schema:givenName Franziska
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032664776.10
    129 rdf:type schema:Person
    130 sg:person.01044130121.32 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
    131 schema:familyName Tautz
    132 schema:givenName Lennart
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044130121.32
    134 rdf:type schema:Person
    135 sg:person.01071257343.13 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
    136 schema:familyName Hennemuth
    137 schema:givenName Anja
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071257343.13
    139 rdf:type schema:Person
    140 sg:person.01075751376.37 schema:affiliation https://www.grid.ac/institutes/grid.418209.6
    141 schema:familyName Kuehne
    142 schema:givenName Titus
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075751376.37
    144 rdf:type schema:Person
    145 sg:person.011175710414.21 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
    146 schema:familyName Vellguth
    147 schema:givenName Katharina
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175710414.21
    149 rdf:type schema:Person
    150 sg:person.01230456217.60 schema:affiliation https://www.grid.ac/institutes/grid.418209.6
    151 schema:familyName Wamala
    152 schema:givenName Isaac
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230456217.60
    154 rdf:type schema:Person
    155 sg:person.01273737554.14 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
    156 schema:familyName Hüllebrand
    157 schema:givenName Markus
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273737554.14
    159 rdf:type schema:Person
    160 sg:person.01366336512.56 schema:affiliation https://www.grid.ac/institutes/grid.428590.2
    161 schema:familyName Neugebauer
    162 schema:givenName Mathias
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366336512.56
    164 rdf:type schema:Person
    165 sg:person.0747301606.13 schema:affiliation https://www.grid.ac/institutes/grid.418209.6
    166 schema:familyName Falk
    167 schema:givenName Volkmar
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747301606.13
    169 rdf:type schema:Person
    170 sg:person.0764721324.11 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
    171 schema:familyName Goubergrits
    172 schema:givenName Leonid
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764721324.11
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-3-319-14678-2_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051700863
    176 https://doi.org/10.1007/978-3-319-14678-2_25
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-319-75541-0_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101529451
    179 https://doi.org/10.1007/978-3-319-75541-0_21
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10237-017-0965-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092101138
    182 https://doi.org/10.1007/s10237-017-0965-8
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10278-016-9879-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033888224
    185 https://doi.org/10.1007/s10278-016-9879-8
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10439-012-0620-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045493478
    188 https://doi.org/10.1007/s10439-012-0620-6
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10439-015-1385-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033556914
    191 https://doi.org/10.1007/s10439-015-1385-5
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10439-016-1676-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040139813
    194 https://doi.org/10.1007/s10439-016-1676-5
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10439-016-1775-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019783570
    197 https://doi.org/10.1007/s10439-016-1775-3
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11517-008-0420-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053377330
    200 https://doi.org/10.1007/s11517-008-0420-1
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s11548-013-0942-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049649046
    203 https://doi.org/10.1007/s11548-013-0942-3
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s13239-010-0032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000716859
    206 https://doi.org/10.1007/s13239-010-0032-4
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1687-5281-2014-52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009265928
    209 https://doi.org/10.1186/1687-5281-2014-52
    210 rdf:type schema:CreativeWork
    211 https://app.dimensions.ai/details/publication/pub.1082603057 schema:CreativeWork
    212 https://doi.org/10.1016/j.athoracsur.2010.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028979194
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.cjca.2014.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025938309
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.jbiomech.2011.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032933451
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.jbiomech.2012.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048981569
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.jcmg.2007.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014046623
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.jcmg.2014.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012174408
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.media.2011.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008917344
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.media.2012.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013815988
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.media.2012.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005059307
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.media.2013.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010222685
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.media.2016.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019157288
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.neucom.2016.03.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017057969
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1055/s-0037-1606603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091756998
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1080/10929080601017212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058378002
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/eurheartj/ehv322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059576631
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1098/rsta.2008.0095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016357907
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1109/mpul.2011.942929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061418953
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/tmi.2010.2048756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695562
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1109/tmi.2010.2050595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695572
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1109/tmi.2012.2219881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695983
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1118/1.3512795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048480020
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1161/01.cir.88.2.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038355301
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1161/cir.0000000000000366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000419428
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.15347/wjm/2014.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067741288
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.3109/10929080601017212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000508518
    261 rdf:type schema:CreativeWork
    262 https://www.grid.ac/institutes/grid.418209.6 schema:alternateName Deutsches Herzzentrum Berlin
    263 schema:name Charité - Universitätsmedizin Berlin, Berlin, Germany
    264 German Heart Institute Berlin - DHZB, Berlin, Germany
    265 rdf:type schema:Organization
    266 https://www.grid.ac/institutes/grid.428590.2 schema:alternateName Fraunhofer MEVIS
    267 schema:name Fraunhofer MEVIS, Bremen, Germany
    268 rdf:type schema:Organization
    269 https://www.grid.ac/institutes/grid.6363.0 schema:alternateName Charité
    270 schema:name Charité - Universitätsmedizin Berlin, Berlin, Germany
    271 Fraunhofer MEVIS, Bremen, Germany
    272 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...