3D/2D model-to-image registration by imitation learning for cardiac procedures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Daniel Toth, Shun Miao, Tanja Kurzendorfer, Christopher A. Rinaldi, Rui Liao, Tommaso Mansi, Kawal Rhode, Peter Mountney

ABSTRACT

PURPOSE: In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. METHODS: This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. RESULTS: Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. CONCLUSION: Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions. More... »

PAGES

1141-1149

References to SciGraph publications

  • 2008-03. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • 2017. Registration with Adjacent Anatomical Structures for Cardiac Resynchronization Therapy Guidance in STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. IMAGING AND MODELLING CHALLENGES
  • 2012. Automatic Segmentation of the Myocardium in Cine MR Images Using Deformable Registration in STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. IMAGING AND MODELLING CHALLENGES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11548-018-1774-y

    DOI

    http://dx.doi.org/10.1007/s11548-018-1774-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103962975

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29754382


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cardiac Resynchronization Therapy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Anatomic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multimodal Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Siemens Healthineers, Frimley, UK", 
                "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toth", 
            "givenName": "Daniel", 
            "id": "sg:person.013763262157.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763262157.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens Healthcare (United States)", 
              "id": "https://www.grid.ac/institutes/grid.415886.6", 
              "name": [
                "Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miao", 
            "givenName": "Shun", 
            "id": "sg:person.016472442662.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472442662.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens Healthcare (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.481749.7", 
              "name": [
                "Siemens Healthineers, Forchheim, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurzendorfer", 
            "givenName": "Tanja", 
            "id": "sg:person.011313351361.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313351361.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Cardiology, Guys and St. Thomas Hospitals NHS Foundation Trust, London, UK", 
                "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rinaldi", 
            "givenName": "Christopher A.", 
            "id": "sg:person.0700211354.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700211354.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens Healthcare (United States)", 
              "id": "https://www.grid.ac/institutes/grid.415886.6", 
              "name": [
                "Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Rui", 
            "id": "sg:person.01347706366.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347706366.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens Healthcare (United States)", 
              "id": "https://www.grid.ac/institutes/grid.415886.6", 
              "name": [
                "Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mansi", 
            "givenName": "Tommaso", 
            "id": "sg:person.01217474726.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rhode", 
            "givenName": "Kawal", 
            "id": "sg:person.014143704447.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143704447.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens Healthcare (United States)", 
              "id": "https://www.grid.ac/institutes/grid.415886.6", 
              "name": [
                "Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mountney", 
            "givenName": "Peter", 
            "id": "sg:person.0702376130.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.2007440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006469996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2016.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017845347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcmg.2014.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028669631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2010.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035675050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-007-0142-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044787721", 
              "https://doi.org/10.1007/s11548-007-0142-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-28326-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048550399", 
              "https://doi.org/10.1007/978-3-642-28326-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circulationaha.105.598524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050515160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/61/8/3009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059031834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2003.819275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2008.2004421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-52718-5_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074189816", 
              "https://doi.org/10.1007/978-3-319-52718-5_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2017.2720158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090394455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2017.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091051846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/visual.2003.1250384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094231018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2016.7493536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095522209"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08", 
        "datePublishedReg": "2018-08-01", 
        "description": "PURPOSE: In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application.\nMETHODS: This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images.\nRESULTS: Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases.\nCONCLUSION: Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11548-018-1774-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1041191", 
            "issn": [
              "1861-6410", 
              "1861-6429"
            ], 
            "name": "International Journal of Computer Assisted Radiology and Surgery", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "3D/2D model-to-image registration by imitation learning for cardiac procedures", 
        "pagination": "1141-1149", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "65b439e4bf4ced33f5cb16fb56d189919c1becb56a00d300e69a8e0d71a008c8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29754382"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101499225"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11548-018-1774-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103962975"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11548-018-1774-y", 
          "https://app.dimensions.ai/details/publication/pub.1103962975"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112060_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11548-018-1774-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1774-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1774-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1774-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-018-1774-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    214 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11548-018-1774-y schema:about N1efadeebb68642bdb48c1f4efca34d63
    2 N554c9600acb44755bbc025462e23123a
    3 N795db57abc6047ca9e3ef62f6ada468c
    4 N82070d7e67694fcabc75cde44731cbe2
    5 Na6f88c7a89634d408620d95b611bcc06
    6 Naaf91d81ef864c5d831fd0beb3e38ab7
    7 Nc6faa4b9c56843dfa9115c6e34bb6faf
    8 Nce8a678b550146a384c16702d4dd0aa7
    9 Nec5fa77605494ebe9498ca9568a97cef
    10 Nee42b02667d1468a81b27db8523ded80
    11 anzsrc-for:08
    12 anzsrc-for:0801
    13 schema:author N7c54fb8b185e4b1598066d8c79369305
    14 schema:citation sg:pub.10.1007/978-3-319-52718-5_14
    15 sg:pub.10.1007/978-3-642-28326-0_10
    16 sg:pub.10.1007/s11548-007-0142-0
    17 https://doi.org/10.1016/j.jcmg.2014.09.002
    18 https://doi.org/10.1016/j.media.2010.03.005
    19 https://doi.org/10.1016/j.media.2016.03.004
    20 https://doi.org/10.1016/j.media.2017.08.001
    21 https://doi.org/10.1088/0031-9155/61/8/3009
    22 https://doi.org/10.1109/isbi.2016.7493536
    23 https://doi.org/10.1109/tmi.2003.819275
    24 https://doi.org/10.1109/tmi.2008.2004421
    25 https://doi.org/10.1109/tmi.2017.2720158
    26 https://doi.org/10.1109/visual.2003.1250384
    27 https://doi.org/10.1117/12.2007440
    28 https://doi.org/10.1161/circulationaha.105.598524
    29 schema:datePublished 2018-08
    30 schema:datePublishedReg 2018-08-01
    31 schema:description PURPOSE: In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. METHODS: This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. RESULTS: Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. CONCLUSION: Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N4dd97b4f709f486d84138197d3295cbd
    36 Nc13e223d202f4693a687bf05595e86c6
    37 sg:journal.1041191
    38 schema:name 3D/2D model-to-image registration by imitation learning for cardiac procedures
    39 schema:pagination 1141-1149
    40 schema:productId N026681f7dad24fadb6b89deab28a9ab4
    41 N75341ac889344b13a188e0a06ab6c69e
    42 Na6ebd806acea4af499e6cb320d1fd3e4
    43 Nc23b27947f064eb6a8cca64cc811efdc
    44 Nc8bb6988f45f4a5e90848a2f1094ca7c
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103962975
    46 https://doi.org/10.1007/s11548-018-1774-y
    47 schema:sdDatePublished 2019-04-11T13:05
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N15ec80732c3547cb8c478d5e30a51ca0
    50 schema:url https://link.springer.com/10.1007%2Fs11548-018-1774-y
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N026681f7dad24fadb6b89deab28a9ab4 schema:name readcube_id
    55 schema:value 65b439e4bf4ced33f5cb16fb56d189919c1becb56a00d300e69a8e0d71a008c8
    56 rdf:type schema:PropertyValue
    57 N15ec80732c3547cb8c478d5e30a51ca0 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N1efadeebb68642bdb48c1f4efca34d63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    60 schema:name Cardiac Resynchronization Therapy
    61 rdf:type schema:DefinedTerm
    62 N4dd97b4f709f486d84138197d3295cbd schema:volumeNumber 13
    63 rdf:type schema:PublicationVolume
    64 N554c9600acb44755bbc025462e23123a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Multimodal Imaging
    66 rdf:type schema:DefinedTerm
    67 N666cc9e4893241c18831d54a8fac182f rdf:first sg:person.01347706366.97
    68 rdf:rest N6bb8a079b8ed4d6da5e09c8404db3333
    69 N6bb8a079b8ed4d6da5e09c8404db3333 rdf:first sg:person.01217474726.73
    70 rdf:rest Nc4cc0a3a528d47c5a47eced9c246506a
    71 N75341ac889344b13a188e0a06ab6c69e schema:name nlm_unique_id
    72 schema:value 101499225
    73 rdf:type schema:PropertyValue
    74 N795db57abc6047ca9e3ef62f6ada468c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Humans
    76 rdf:type schema:DefinedTerm
    77 N7c54fb8b185e4b1598066d8c79369305 rdf:first sg:person.013763262157.14
    78 rdf:rest N87390df2c8ff4bbca352bac452d8d732
    79 N82070d7e67694fcabc75cde44731cbe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Heart
    81 rdf:type schema:DefinedTerm
    82 N87390df2c8ff4bbca352bac452d8d732 rdf:first sg:person.016472442662.96
    83 rdf:rest N87e1eb98fa124d0ea24ac6202d9a2bdb
    84 N87e1eb98fa124d0ea24ac6202d9a2bdb rdf:first sg:person.011313351361.95
    85 rdf:rest N9bb079128f874b909f8ff044aa340343
    86 N9bb079128f874b909f8ff044aa340343 rdf:first sg:person.0700211354.00
    87 rdf:rest N666cc9e4893241c18831d54a8fac182f
    88 Na4fafd4b3c01499ea9dc23b4b8059231 rdf:first sg:person.0702376130.54
    89 rdf:rest rdf:nil
    90 Na6ebd806acea4af499e6cb320d1fd3e4 schema:name pubmed_id
    91 schema:value 29754382
    92 rdf:type schema:PropertyValue
    93 Na6f88c7a89634d408620d95b611bcc06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Reproducibility of Results
    95 rdf:type schema:DefinedTerm
    96 Naaf91d81ef864c5d831fd0beb3e38ab7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Imaging, Three-Dimensional
    98 rdf:type schema:DefinedTerm
    99 Nc13e223d202f4693a687bf05595e86c6 schema:issueNumber 8
    100 rdf:type schema:PublicationIssue
    101 Nc23b27947f064eb6a8cca64cc811efdc schema:name dimensions_id
    102 schema:value pub.1103962975
    103 rdf:type schema:PropertyValue
    104 Nc4cc0a3a528d47c5a47eced9c246506a rdf:first sg:person.014143704447.22
    105 rdf:rest Na4fafd4b3c01499ea9dc23b4b8059231
    106 Nc6faa4b9c56843dfa9115c6e34bb6faf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Image Processing, Computer-Assisted
    108 rdf:type schema:DefinedTerm
    109 Nc8bb6988f45f4a5e90848a2f1094ca7c schema:name doi
    110 schema:value 10.1007/s11548-018-1774-y
    111 rdf:type schema:PropertyValue
    112 Nce8a678b550146a384c16702d4dd0aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Machine Learning
    114 rdf:type schema:DefinedTerm
    115 Nec5fa77605494ebe9498ca9568a97cef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Models, Anatomic
    117 rdf:type schema:DefinedTerm
    118 Nee42b02667d1468a81b27db8523ded80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Algorithms
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Information and Computing Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Artificial Intelligence and Image Processing
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1041191 schema:issn 1861-6410
    128 1861-6429
    129 schema:name International Journal of Computer Assisted Radiology and Surgery
    130 rdf:type schema:Periodical
    131 sg:person.011313351361.95 schema:affiliation https://www.grid.ac/institutes/grid.481749.7
    132 schema:familyName Kurzendorfer
    133 schema:givenName Tanja
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313351361.95
    135 rdf:type schema:Person
    136 sg:person.01217474726.73 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
    137 schema:familyName Mansi
    138 schema:givenName Tommaso
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
    140 rdf:type schema:Person
    141 sg:person.01347706366.97 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
    142 schema:familyName Liao
    143 schema:givenName Rui
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347706366.97
    145 rdf:type schema:Person
    146 sg:person.013763262157.14 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    147 schema:familyName Toth
    148 schema:givenName Daniel
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763262157.14
    150 rdf:type schema:Person
    151 sg:person.014143704447.22 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    152 schema:familyName Rhode
    153 schema:givenName Kawal
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143704447.22
    155 rdf:type schema:Person
    156 sg:person.016472442662.96 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
    157 schema:familyName Miao
    158 schema:givenName Shun
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016472442662.96
    160 rdf:type schema:Person
    161 sg:person.0700211354.00 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    162 schema:familyName Rinaldi
    163 schema:givenName Christopher A.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700211354.00
    165 rdf:type schema:Person
    166 sg:person.0702376130.54 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
    167 schema:familyName Mountney
    168 schema:givenName Peter
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54
    170 rdf:type schema:Person
    171 sg:pub.10.1007/978-3-319-52718-5_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074189816
    172 https://doi.org/10.1007/978-3-319-52718-5_14
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/978-3-642-28326-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048550399
    175 https://doi.org/10.1007/978-3-642-28326-0_10
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11548-007-0142-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044787721
    178 https://doi.org/10.1007/s11548-007-0142-0
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.jcmg.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028669631
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.media.2010.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035675050
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.media.2016.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017845347
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.media.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091051846
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1088/0031-9155/61/8/3009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031834
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/isbi.2016.7493536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095522209
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/tmi.2003.819275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694486
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1109/tmi.2008.2004421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695160
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1109/tmi.2017.2720158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090394455
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1109/visual.2003.1250384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094231018
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1117/12.2007440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006469996
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1161/circulationaha.105.598524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050515160
    203 rdf:type schema:CreativeWork
    204 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
    205 schema:name Department of Cardiology, Guys and St. Thomas Hospitals NHS Foundation Trust, London, UK
    206 School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
    207 Siemens Healthineers, Frimley, UK
    208 rdf:type schema:Organization
    209 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
    210 schema:name Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA
    211 rdf:type schema:Organization
    212 https://www.grid.ac/institutes/grid.481749.7 schema:alternateName Siemens Healthcare (Germany)
    213 schema:name Siemens Healthineers, Forchheim, Germany
    214 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...