Using needle orientation sensing as surrogate signal for respiratory motion estimation in percutaneous interventions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-01

AUTHORS

Momen Abayazid, Takahisa Kato, Stuart G. Silverman, Nobuhiko Hata

ABSTRACT

PurposeTo develop and evaluate an approach to estimate the respiratory-induced motion of lesions in the chest and abdomen.Materials and methodsThe proposed approach uses the motion of an initial reference needle inserted into a moving organ to estimate the lesion (target) displacement that is caused by respiration. The needles position is measured using an inertial measurement unit (IMU) sensor externally attached to the hub of an initially placed reference needle. Data obtained from the IMU sensor and the target motion are used to train a learning-based approach to estimate the position of the moving target. An experimental platform was designed to mimic respiratory motion of the liver. Liver motion profiles of human subjects provided inputs to the experimental platform. Variables including the insertion angle, target depth, target motion velocity and target proximity to the reference needle were evaluated by measuring the error of the estimated target position and processing time.ResultsThe mean error of estimation of the target position ranged between 0.86 and 1.29 mm. The processing maximum training and testing time was 5 ms which is suitable for real-time target motion estimation using the needle position sensor.ConclusionThe external motion of an initially placed reference needle inserted into a moving organ can be used as a surrogate, measurable and accessible signal to estimate in real-time the position of a moving target caused by respiration; this technique could then be used to guide the placement of subsequently inserted needles directly into the target. More... »

PAGES

125-133

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11548-017-1644-z

DOI

http://dx.doi.org/10.1007/s11548-017-1644-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090940285

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28766177


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Abdomen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Needles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Mechanics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thorax", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MIRA-Institute for Biomedical Technology and Technical Medicine (Robotics and Mechatronics), University of Twente, Enschede, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6214.1", 
          "name": [
            "Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA", 
            "MIRA-Institute for Biomedical Technology and Technical Medicine (Robotics and Mechatronics), University of Twente, Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abayazid", 
        "givenName": "Momen", 
        "id": "sg:person.01170057500.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170057500.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA", 
            "Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Takahisa", 
        "id": "sg:person.0742555202.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742555202.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silverman", 
        "givenName": "Stuart G.", 
        "id": "sg:person.0741341512.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741341512.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "id": "sg:person.011514123570.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514123570.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep07861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001208663", 
          "https://doi.org/10.1038/srep07861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-010-0523-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026634465", 
          "https://doi.org/10.1007/s11548-010-0523-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74958-5_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041940329", 
          "https://doi.org/10.1007/978-3-540-74958-5_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-013-9980-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051416364", 
          "https://doi.org/10.1007/s00261-013-9980-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-01", 
    "datePublishedReg": "2017-08-01", 
    "description": "PurposeTo develop and evaluate an approach to estimate the respiratory-induced motion of lesions in the chest and abdomen.Materials and methodsThe proposed approach uses the motion of an initial reference needle inserted into a moving organ to estimate the lesion (target) displacement that is caused by respiration. The needles position is measured using an inertial measurement unit (IMU) sensor externally attached to the hub of an initially placed reference needle. Data obtained from the IMU sensor and the target motion are used to train a learning-based approach to estimate the position of the moving target. An experimental platform was designed to mimic respiratory motion of the liver. Liver motion profiles of human subjects provided inputs to the experimental platform. Variables including the insertion angle, target depth, target motion velocity and target proximity to the reference needle were evaluated by measuring the error of the estimated target position and processing time.ResultsThe mean error of estimation of the target position ranged between 0.86 and 1.29\u00a0mm. The processing maximum training and testing time was 5\u00a0ms which is suitable for real-time target motion estimation using the needle position sensor.ConclusionThe external motion of an initially placed reference needle inserted into a moving organ can be used as a surrogate, measurable and accessible signal to estimate in real-time the position of a moving target caused by respiration; this technique could then be used to guide the placement of subsequently inserted needles directly into the target.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11548-017-1644-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439670", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041191", 
        "issn": [
          "1861-6410", 
          "1861-6429"
        ], 
        "name": "International Journal of Computer Assisted Radiology and Surgery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "experimental platform", 
      "reference needle", 
      "target motion estimation", 
      "inertial measurement unit (IMU) sensors", 
      "motion estimation", 
      "position sensor", 
      "respiratory motion estimation", 
      "IMU sensors", 
      "motion profiles", 
      "unit sensors", 
      "target position", 
      "sensors", 
      "motion velocity", 
      "target depth", 
      "accessible signals", 
      "needle orientation", 
      "motion", 
      "processing time", 
      "external motion", 
      "target motion", 
      "surrogate signals", 
      "testing time", 
      "mean error", 
      "respiratory motion", 
      "percutaneous intervention", 
      "estimation", 
      "insertion angle", 
      "human subjects", 
      "needle position", 
      "signals", 
      "lesion displacement", 
      "velocity", 
      "error", 
      "displacement", 
      "materials", 
      "platform", 
      "organs", 
      "needle", 
      "angle", 
      "maximum training", 
      "depth", 
      "PurposeTo", 
      "lesions", 
      "target", 
      "chest", 
      "abdomen", 
      "approach", 
      "learning-based approach", 
      "liver", 
      "position", 
      "intervention", 
      "technique", 
      "orientation", 
      "time", 
      "MethodsThe", 
      "input", 
      "subjects", 
      "placement", 
      "ms", 
      "respiration", 
      "hub", 
      "profile", 
      "training", 
      "data", 
      "variables", 
      "proximity"
    ], 
    "name": "Using needle orientation sensing as surrogate signal for respiratory motion estimation in percutaneous interventions", 
    "pagination": "125-133", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090940285"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11548-017-1644-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28766177"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11548-017-1644-z", 
      "https://app.dimensions.ai/details/publication/pub.1090940285"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_729.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11548-017-1644-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-017-1644-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-017-1644-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-017-1644-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-017-1644-z'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      105 URIs      93 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11548-017-1644-z schema:about N14837a69f5c0488d9b78de939270e27c
2 N31505159a0144385bc84ebda79039c38
3 N3211b033fc654685b57601f2bdbb9d81
4 N4efb0f6cf0ba484daa1c8d8fa3fb1d7e
5 N5188f9f9499541f9985e3bf6d6e0844c
6 N6914e033e74d44c8bc09f41195847733
7 Nd2ab08fe2d2e41dfa678a73a38fdc4f8
8 Nd3523f5422e843e88ddb69a25e49283b
9 Nee0799f7348b4caeb08740cab9d629a2
10 Needaddb13ef7460c9b3f7fede2bf354f
11 anzsrc-for:11
12 anzsrc-for:1103
13 schema:author Ne39c71f34896424cbcf7584ece5e7386
14 schema:citation sg:pub.10.1007/978-3-540-74958-5_38
15 sg:pub.10.1007/s00261-013-9980-0
16 sg:pub.10.1007/s11548-010-0523-7
17 sg:pub.10.1038/srep07861
18 schema:datePublished 2017-08-01
19 schema:datePublishedReg 2017-08-01
20 schema:description PurposeTo develop and evaluate an approach to estimate the respiratory-induced motion of lesions in the chest and abdomen.Materials and methodsThe proposed approach uses the motion of an initial reference needle inserted into a moving organ to estimate the lesion (target) displacement that is caused by respiration. The needles position is measured using an inertial measurement unit (IMU) sensor externally attached to the hub of an initially placed reference needle. Data obtained from the IMU sensor and the target motion are used to train a learning-based approach to estimate the position of the moving target. An experimental platform was designed to mimic respiratory motion of the liver. Liver motion profiles of human subjects provided inputs to the experimental platform. Variables including the insertion angle, target depth, target motion velocity and target proximity to the reference needle were evaluated by measuring the error of the estimated target position and processing time.ResultsThe mean error of estimation of the target position ranged between 0.86 and 1.29 mm. The processing maximum training and testing time was 5 ms which is suitable for real-time target motion estimation using the needle position sensor.ConclusionThe external motion of an initially placed reference needle inserted into a moving organ can be used as a surrogate, measurable and accessible signal to estimate in real-time the position of a moving target caused by respiration; this technique could then be used to guide the placement of subsequently inserted needles directly into the target.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf Nced7a53ef50345a7b19732567342ac5c
24 Nf6c88a2cc55641078e43f5a76ab22874
25 sg:journal.1041191
26 schema:keywords IMU sensors
27 MethodsThe
28 PurposeTo
29 abdomen
30 accessible signals
31 angle
32 approach
33 chest
34 data
35 depth
36 displacement
37 error
38 estimation
39 experimental platform
40 external motion
41 hub
42 human subjects
43 inertial measurement unit (IMU) sensors
44 input
45 insertion angle
46 intervention
47 learning-based approach
48 lesion displacement
49 lesions
50 liver
51 materials
52 maximum training
53 mean error
54 motion
55 motion estimation
56 motion profiles
57 motion velocity
58 ms
59 needle
60 needle orientation
61 needle position
62 organs
63 orientation
64 percutaneous intervention
65 placement
66 platform
67 position
68 position sensor
69 processing time
70 profile
71 proximity
72 reference needle
73 respiration
74 respiratory motion
75 respiratory motion estimation
76 sensors
77 signals
78 subjects
79 surrogate signals
80 target
81 target depth
82 target motion
83 target motion estimation
84 target position
85 technique
86 testing time
87 time
88 training
89 unit sensors
90 variables
91 velocity
92 schema:name Using needle orientation sensing as surrogate signal for respiratory motion estimation in percutaneous interventions
93 schema:pagination 125-133
94 schema:productId N16b141c618ba4f57ba48e703dd85927b
95 N2faaff793b0449ceb754a0a496fa2025
96 N7a2189ef53c94e7abc73d0a2492678d8
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090940285
98 https://doi.org/10.1007/s11548-017-1644-z
99 schema:sdDatePublished 2022-11-24T21:02
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N5493039ab5524c569d8ea08c5e891193
102 schema:url https://doi.org/10.1007/s11548-017-1644-z
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N14837a69f5c0488d9b78de939270e27c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Thorax
108 rdf:type schema:DefinedTerm
109 N16b141c618ba4f57ba48e703dd85927b schema:name dimensions_id
110 schema:value pub.1090940285
111 rdf:type schema:PropertyValue
112 N2faaff793b0449ceb754a0a496fa2025 schema:name doi
113 schema:value 10.1007/s11548-017-1644-z
114 rdf:type schema:PropertyValue
115 N31505159a0144385bc84ebda79039c38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Respiration
117 rdf:type schema:DefinedTerm
118 N3211b033fc654685b57601f2bdbb9d81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Respiratory Mechanics
120 rdf:type schema:DefinedTerm
121 N45b3a274ad20464baf92d8dc60b30e4f rdf:first sg:person.011514123570.21
122 rdf:rest rdf:nil
123 N4efb0f6cf0ba484daa1c8d8fa3fb1d7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Machine Learning
125 rdf:type schema:DefinedTerm
126 N5188f9f9499541f9985e3bf6d6e0844c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Needles
128 rdf:type schema:DefinedTerm
129 N5493039ab5524c569d8ea08c5e891193 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N6914e033e74d44c8bc09f41195847733 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Motion
133 rdf:type schema:DefinedTerm
134 N7a2189ef53c94e7abc73d0a2492678d8 schema:name pubmed_id
135 schema:value 28766177
136 rdf:type schema:PropertyValue
137 N99bb8f546f4e4bb1a4132aff9aaec1aa rdf:first sg:person.0741341512.25
138 rdf:rest N45b3a274ad20464baf92d8dc60b30e4f
139 Nced7a53ef50345a7b19732567342ac5c schema:issueNumber 1
140 rdf:type schema:PublicationIssue
141 Nd2ab08fe2d2e41dfa678a73a38fdc4f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Algorithms
143 rdf:type schema:DefinedTerm
144 Nd3523f5422e843e88ddb69a25e49283b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Abdomen
146 rdf:type schema:DefinedTerm
147 Ne39c71f34896424cbcf7584ece5e7386 rdf:first sg:person.01170057500.55
148 rdf:rest Nf8822b6a986d4d14b80f90d93d5b2a26
149 Nee0799f7348b4caeb08740cab9d629a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Magnetic Resonance Imaging
151 rdf:type schema:DefinedTerm
152 Needaddb13ef7460c9b3f7fede2bf354f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Humans
154 rdf:type schema:DefinedTerm
155 Nf6c88a2cc55641078e43f5a76ab22874 schema:volumeNumber 13
156 rdf:type schema:PublicationVolume
157 Nf8822b6a986d4d14b80f90d93d5b2a26 rdf:first sg:person.0742555202.85
158 rdf:rest N99bb8f546f4e4bb1a4132aff9aaec1aa
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
163 schema:name Clinical Sciences
164 rdf:type schema:DefinedTerm
165 sg:grant.2439670 http://pending.schema.org/fundedItem sg:pub.10.1007/s11548-017-1644-z
166 rdf:type schema:MonetaryGrant
167 sg:journal.1041191 schema:issn 1861-6410
168 1861-6429
169 schema:name International Journal of Computer Assisted Radiology and Surgery
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.011514123570.21 schema:affiliation grid-institutes:grid.62560.37
173 schema:familyName Hata
174 schema:givenName Nobuhiko
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514123570.21
176 rdf:type schema:Person
177 sg:person.01170057500.55 schema:affiliation grid-institutes:grid.6214.1
178 schema:familyName Abayazid
179 schema:givenName Momen
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170057500.55
181 rdf:type schema:Person
182 sg:person.0741341512.25 schema:affiliation grid-institutes:grid.62560.37
183 schema:familyName Silverman
184 schema:givenName Stuart G.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741341512.25
186 rdf:type schema:Person
187 sg:person.0742555202.85 schema:affiliation grid-institutes:None
188 schema:familyName Kato
189 schema:givenName Takahisa
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742555202.85
191 rdf:type schema:Person
192 sg:pub.10.1007/978-3-540-74958-5_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041940329
193 https://doi.org/10.1007/978-3-540-74958-5_38
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00261-013-9980-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051416364
196 https://doi.org/10.1007/s00261-013-9980-0
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s11548-010-0523-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026634465
199 https://doi.org/10.1007/s11548-010-0523-7
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/srep07861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001208663
202 https://doi.org/10.1038/srep07861
203 rdf:type schema:CreativeWork
204 grid-institutes:None schema:alternateName Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, MA, USA
205 schema:name Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA
206 Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, MA, USA
207 rdf:type schema:Organization
208 grid-institutes:grid.6214.1 schema:alternateName MIRA-Institute for Biomedical Technology and Technical Medicine (Robotics and Mechatronics), University of Twente, Enschede, The Netherlands
209 schema:name Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA
210 MIRA-Institute for Biomedical Technology and Technical Medicine (Robotics and Mechatronics), University of Twente, Enschede, The Netherlands
211 rdf:type schema:Organization
212 grid-institutes:grid.62560.37 schema:alternateName Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA
213 schema:name Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA, USA
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...