A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

Rui Jia, Stephen Mellon, Paul Monk, David Murray, J. Alison Noble

ABSTRACT

PURPOSE: Investigation of joint kinematics contributes to developing a better understanding of musculoskeletal conditions. However, the most commonly used optoelectronic motion analysis systems cannot determine the movements of underlying bone landmarks with high accuracy because of soft tissue artefacts. The aim of this paper was to present a computer-aided measurement system to track the underlying bone anatomy in a 3D global coordinate frame and describe hip joint kinematics of ten healthy volunteers during gait. METHODS: We have developed a measurement tool with an image-based computer-aided post-processing pipeline for automatic bone segmentation in ultrasound (US) images and a globally optimal 3D surface-to-surface registration method to quantify hip joint movements. The segmentation algorithm exploits US intensity profiles, including information about the integrated backscattering, acoustic shadows, and local phase features. A global optimization method is applied based on the traditional iterative closest point registration algorithm, which is robust to initialization. The International Society of Biomechanics recommended joint kinematics descriptor has been adapted to calculate the joint kinematics. RESULTS: The developed system prototype has been validated with a ball-joint femoral phantom and tested in vivo with 10 volunteers. The maximum Euclidean distance error of the automatic bone segmentation is less than 2 pixels (approximately 0.2 mm). The maximum absolute rotation angle error is less than [Formula: see text]. CONCLUSION: This computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system shows the feasibility of describing hip joint kinematics for clinical investigation and diagnosis using an image-based solution. More... »

PAGES

1965-1977

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11548-016-1443-y

DOI

http://dx.doi.org/10.1007/s11548-016-1443-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010948657

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27311825


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Femur", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hip Joint", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Range of Motion, Articular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Rui", 
        "id": "sg:person.013135104271.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013135104271.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mellon", 
        "givenName": "Stephen", 
        "id": "sg:person.01361606064.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361606064.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monk", 
        "givenName": "Paul", 
        "id": "sg:person.014530045271.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530045271.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murray", 
        "givenName": "David", 
        "id": "sg:person.012633757262.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noble", 
        "givenName": "J. Alison", 
        "id": "sg:person.01310044750.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310044750.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00276-007-0208-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003029219", 
          "https://doi.org/10.1007/s00276-007-0208-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00276-007-0208-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003029219", 
          "https://doi.org/10.1007/s00276-007-0208-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-015-1208-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003981871", 
          "https://doi.org/10.1007/s11548-015-1208-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2003.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017680027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2009.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022371464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2011.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026964942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcs.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031460991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gaitpost.2009.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049436693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01427149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436308", 
          "https://doi.org/10.1007/bf01427149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01427149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436308", 
          "https://doi.org/10.1007/bf01427149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9290(01)00222-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053075062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(91)90175-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053172957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.969520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2005.862736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2519/jospt.2003.33.11.639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070872705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7163863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093301071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ultsym.2007.635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093575193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2009.5193166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094155652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094420674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2016.7493435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095517268"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "PURPOSE: Investigation of joint kinematics contributes to developing a better understanding of musculoskeletal conditions. However, the most commonly used optoelectronic motion analysis systems cannot determine the movements of underlying bone landmarks with high accuracy because of soft tissue artefacts. The aim of this paper was to present a computer-aided measurement system to track the underlying bone anatomy in a 3D global coordinate frame and describe hip joint kinematics of ten healthy volunteers during gait.\nMETHODS: We have developed a measurement tool with an image-based computer-aided post-processing pipeline for automatic bone segmentation in ultrasound (US) images and a globally optimal 3D surface-to-surface registration method to quantify hip joint movements. The segmentation algorithm exploits US intensity profiles, including information about the integrated backscattering, acoustic shadows, and local phase features. A global optimization method is applied based on the traditional iterative closest point registration algorithm, which is robust to initialization. The International Society of Biomechanics recommended joint kinematics descriptor has been adapted to calculate the joint kinematics.\nRESULTS: The developed system prototype has been validated with a ball-joint femoral phantom and tested in vivo with 10 volunteers. The maximum Euclidean distance error of the automatic bone segmentation is less than 2 pixels (approximately 0.2\u00a0mm). The maximum absolute rotation angle error is less than [Formula: see text].\nCONCLUSION: This computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system shows the feasibility of describing hip joint kinematics for clinical investigation and diagnosis using an image-based solution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11548-016-1443-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041191", 
        "issn": [
          "1861-6410", 
          "1861-6429"
        ], 
        "name": "International Journal of Computer Assisted Radiology and Surgery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics", 
    "pagination": "1965-1977", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3429b9faa48118b70252a7da4901700e4ac4b122df6f158c42d316e1ac353ae8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27311825"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101499225"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11548-016-1443-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010948657"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11548-016-1443-y", 
      "https://app.dimensions.ai/details/publication/pub.1010948657"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87104_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11548-016-1443-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-016-1443-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-016-1443-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-016-1443-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-016-1443-y'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      64 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11548-016-1443-y schema:about N10a12122f30849808f61760e55f5aabc
2 N1b619bc784564164bef49122eb6a9b4e
3 N1b98ce6385c740cbb2c328caf82b764d
4 N2756a822b90547ad8af3629d200c2e69
5 N495fc0f58b254a8e966ee85e385be2f8
6 N4d49786a55224cb582c352fc08965361
7 N5963e51e598e4900886eb605c8e4fcb7
8 N5c1795650a3a4d10aac13323af5be9df
9 N64ac9e4b767145289944ea5d5786b34c
10 N6bca266b25484b689a2b92c946cc70ce
11 N91174f6603ae42d09ad5e7c3fb2dbb13
12 Nb548bea3e29b4890a0a60f32d7c594eb
13 Nd095bed12a454425bc20c8248e119060
14 Ndf43c3063fb147a2ab3de9543e628bd0
15 Ne81425bff2f347b7850f0869ea0d4c6d
16 Nea0b5c67d8c44294bfb0113212f1b41c
17 Neb5e20f876ed4bd880701ea5ef9f01d9
18 anzsrc-for:09
19 anzsrc-for:0903
20 schema:author Nf21636dbdd4e4c6f9519952e35d0c29d
21 schema:citation sg:pub.10.1007/bf01427149
22 sg:pub.10.1007/s00276-007-0208-2
23 sg:pub.10.1007/s11548-015-1208-z
24 https://doi.org/10.1002/rcs.160
25 https://doi.org/10.1016/0021-9290(91)90175-m
26 https://doi.org/10.1016/j.gaitpost.2009.09.004
27 https://doi.org/10.1016/j.imavis.2003.09.004
28 https://doi.org/10.1016/j.ultrasmedbio.2009.04.015
29 https://doi.org/10.1016/j.ultrasmedbio.2011.10.009
30 https://doi.org/10.1016/s0021-9290(01)00222-6
31 https://doi.org/10.1109/78.969520
32 https://doi.org/10.1109/iccv.2013.184
33 https://doi.org/10.1109/isbi.2009.5193166
34 https://doi.org/10.1109/isbi.2015.7163863
35 https://doi.org/10.1109/isbi.2016.7493435
36 https://doi.org/10.1109/tmi.2005.862736
37 https://doi.org/10.1109/ultsym.2007.635
38 https://doi.org/10.2519/jospt.2003.33.11.639
39 schema:datePublished 2016-11
40 schema:datePublishedReg 2016-11-01
41 schema:description PURPOSE: Investigation of joint kinematics contributes to developing a better understanding of musculoskeletal conditions. However, the most commonly used optoelectronic motion analysis systems cannot determine the movements of underlying bone landmarks with high accuracy because of soft tissue artefacts. The aim of this paper was to present a computer-aided measurement system to track the underlying bone anatomy in a 3D global coordinate frame and describe hip joint kinematics of ten healthy volunteers during gait. METHODS: We have developed a measurement tool with an image-based computer-aided post-processing pipeline for automatic bone segmentation in ultrasound (US) images and a globally optimal 3D surface-to-surface registration method to quantify hip joint movements. The segmentation algorithm exploits US intensity profiles, including information about the integrated backscattering, acoustic shadows, and local phase features. A global optimization method is applied based on the traditional iterative closest point registration algorithm, which is robust to initialization. The International Society of Biomechanics recommended joint kinematics descriptor has been adapted to calculate the joint kinematics. RESULTS: The developed system prototype has been validated with a ball-joint femoral phantom and tested in vivo with 10 volunteers. The maximum Euclidean distance error of the automatic bone segmentation is less than 2 pixels (approximately 0.2 mm). The maximum absolute rotation angle error is less than [Formula: see text]. CONCLUSION: This computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system shows the feasibility of describing hip joint kinematics for clinical investigation and diagnosis using an image-based solution.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N1bca2ec53b2b4056991bb47a8b9d2c86
46 N66ac25e137b34fefb36e79d52f29168e
47 sg:journal.1041191
48 schema:name A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics
49 schema:pagination 1965-1977
50 schema:productId N44675da9635d4ee1b1ed54c729a33a4d
51 Na21883796fd44764aee95aa745bd5ce2
52 Nc9b182580299466584e6c2ccb4ff7838
53 Nd97c36225b4f4b8d9f5b7f47f13a86f1
54 Nf99235c34cd44c07b0ac2c338b6cffeb
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010948657
56 https://doi.org/10.1007/s11548-016-1443-y
57 schema:sdDatePublished 2019-04-11T12:25
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N9c8301bf706548cea69bfa23e2f278ae
60 schema:url https://link.springer.com/10.1007%2Fs11548-016-1443-y
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N10a12122f30849808f61760e55f5aabc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Biomechanical Phenomena
66 rdf:type schema:DefinedTerm
67 N1b619bc784564164bef49122eb6a9b4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Femur
69 rdf:type schema:DefinedTerm
70 N1b98ce6385c740cbb2c328caf82b764d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Phantoms, Imaging
72 rdf:type schema:DefinedTerm
73 N1bca2ec53b2b4056991bb47a8b9d2c86 schema:issueNumber 11
74 rdf:type schema:PublicationIssue
75 N2756a822b90547ad8af3629d200c2e69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Imaging, Three-Dimensional
77 rdf:type schema:DefinedTerm
78 N44675da9635d4ee1b1ed54c729a33a4d schema:name dimensions_id
79 schema:value pub.1010948657
80 rdf:type schema:PropertyValue
81 N495fc0f58b254a8e966ee85e385be2f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N4d49786a55224cb582c352fc08965361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Range of Motion, Articular
86 rdf:type schema:DefinedTerm
87 N5963e51e598e4900886eb605c8e4fcb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Adult
89 rdf:type schema:DefinedTerm
90 N5c1795650a3a4d10aac13323af5be9df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Algorithms
92 rdf:type schema:DefinedTerm
93 N64ac9e4b767145289944ea5d5786b34c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Young Adult
95 rdf:type schema:DefinedTerm
96 N66ac25e137b34fefb36e79d52f29168e schema:volumeNumber 11
97 rdf:type schema:PublicationVolume
98 N6aeb408c06ec41b593da4f085703b8e2 rdf:first sg:person.012633757262.69
99 rdf:rest Ncea12f5312d344f490213d50ade1aaff
100 N6bca266b25484b689a2b92c946cc70ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Hip Joint
102 rdf:type schema:DefinedTerm
103 N7a5ed6a4d1e242449b7762938e446815 rdf:first sg:person.01361606064.25
104 rdf:rest N93757358c4384dfe992c6a57fce46eb0
105 N91174f6603ae42d09ad5e7c3fb2dbb13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Reference Values
107 rdf:type schema:DefinedTerm
108 N93757358c4384dfe992c6a57fce46eb0 rdf:first sg:person.014530045271.34
109 rdf:rest N6aeb408c06ec41b593da4f085703b8e2
110 N9c8301bf706548cea69bfa23e2f278ae schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Na21883796fd44764aee95aa745bd5ce2 schema:name pubmed_id
113 schema:value 27311825
114 rdf:type schema:PropertyValue
115 Nb548bea3e29b4890a0a60f32d7c594eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Movement
117 rdf:type schema:DefinedTerm
118 Nc9b182580299466584e6c2ccb4ff7838 schema:name readcube_id
119 schema:value 3429b9faa48118b70252a7da4901700e4ac4b122df6f158c42d316e1ac353ae8
120 rdf:type schema:PropertyValue
121 Ncea12f5312d344f490213d50ade1aaff rdf:first sg:person.01310044750.32
122 rdf:rest rdf:nil
123 Nd095bed12a454425bc20c8248e119060 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Male
125 rdf:type schema:DefinedTerm
126 Nd97c36225b4f4b8d9f5b7f47f13a86f1 schema:name doi
127 schema:value 10.1007/s11548-016-1443-y
128 rdf:type schema:PropertyValue
129 Ndf43c3063fb147a2ab3de9543e628bd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Female
131 rdf:type schema:DefinedTerm
132 Ne81425bff2f347b7850f0869ea0d4c6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Ultrasonography
134 rdf:type schema:DefinedTerm
135 Nea0b5c67d8c44294bfb0113212f1b41c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Adolescent
137 rdf:type schema:DefinedTerm
138 Neb5e20f876ed4bd880701ea5ef9f01d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Image Processing, Computer-Assisted
140 rdf:type schema:DefinedTerm
141 Nf21636dbdd4e4c6f9519952e35d0c29d rdf:first sg:person.013135104271.96
142 rdf:rest N7a5ed6a4d1e242449b7762938e446815
143 Nf99235c34cd44c07b0ac2c338b6cffeb schema:name nlm_unique_id
144 schema:value 101499225
145 rdf:type schema:PropertyValue
146 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
147 schema:name Engineering
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biomedical Engineering
151 rdf:type schema:DefinedTerm
152 sg:journal.1041191 schema:issn 1861-6410
153 1861-6429
154 schema:name International Journal of Computer Assisted Radiology and Surgery
155 rdf:type schema:Periodical
156 sg:person.012633757262.69 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
157 schema:familyName Murray
158 schema:givenName David
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69
160 rdf:type schema:Person
161 sg:person.01310044750.32 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
162 schema:familyName Noble
163 schema:givenName J. Alison
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310044750.32
165 rdf:type schema:Person
166 sg:person.013135104271.96 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
167 schema:familyName Jia
168 schema:givenName Rui
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013135104271.96
170 rdf:type schema:Person
171 sg:person.01361606064.25 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
172 schema:familyName Mellon
173 schema:givenName Stephen
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361606064.25
175 rdf:type schema:Person
176 sg:person.014530045271.34 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
177 schema:familyName Monk
178 schema:givenName Paul
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530045271.34
180 rdf:type schema:Person
181 sg:pub.10.1007/bf01427149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050436308
182 https://doi.org/10.1007/bf01427149
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00276-007-0208-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003029219
185 https://doi.org/10.1007/s00276-007-0208-2
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s11548-015-1208-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003981871
188 https://doi.org/10.1007/s11548-015-1208-z
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/rcs.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031460991
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/0021-9290(91)90175-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172957
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.gaitpost.2009.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049436693
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.imavis.2003.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017680027
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.ultrasmedbio.2009.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022371464
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.ultrasmedbio.2011.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026964942
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0021-9290(01)00222-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053075062
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/78.969520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231773
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/iccv.2013.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094420674
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/isbi.2009.5193166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094155652
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/isbi.2015.7163863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093301071
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/isbi.2016.7493435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095517268
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/tmi.2005.862736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694818
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/ultsym.2007.635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093575193
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2519/jospt.2003.33.11.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070872705
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
221 schema:name Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
222 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...