Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

Mariko Tsukune, Yo Kobayashi, Tomoyuki Miyashita, G. Masakatsu Fujie

ABSTRACT

PURPOSE: Accurate, noninvasive methods are sought for breast tumor detection and diagnosis. In particular, a need for noninvasive techniques that measure both the nonlinear elastic and viscoelastic properties of breast tissue has been identified. For diagnostic purposes, it is important to select a nonlinear viscoelastic model with a small number of parameters that highly correlate with histological structure. However, the combination of conventional viscoelastic models with nonlinear elastic models requires a large number of parameters. A nonlinear viscoelastic model of breast tissue based on a simple equation with few parameters was developed and tested. METHODS: The nonlinear viscoelastic properties of soft tissues in porcine breast were measured experimentally using fresh ex vivo samples. Robotic palpation was used for measurements employed in a finite element model. These measurements were used to calculate nonlinear viscoelastic parameters for fat, fibroglandular breast parenchyma and muscle. The ability of these parameters to distinguish the tissue types was evaluated in a two-step statistical analysis that included Holm's pairwise [Formula: see text] test. The discrimination error rate of a set of parameters was evaluated by the Mahalanobis distance. RESULTS: Ex vivo testing in porcine breast revealed significant differences in the nonlinear viscoelastic parameters among combinations of three tissue types. The discrimination error rate was low among all tested combinations of three tissue types. CONCLUSION: Although tissue discrimination was not achieved using only a single nonlinear viscoelastic parameter, a set of four nonlinear viscoelastic parameters were able to reliably and accurately discriminate fat, breast fibroglandular tissue and muscle. More... »

PAGES

593-601

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11548-014-1100-2

DOI

http://dx.doi.org/10.1007/s11548-014-1100-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004007347

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25073606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Palpation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Robotics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Swine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Graduate School of Creative Science/Institute of Advanced Active Aging Research, Waseda University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukune", 
        "givenName": "Mariko", 
        "id": "sg:person.01356310134.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356310134.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Science and Engineering/Research Institute of Science and Engineering, Waseda University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kobayashi", 
        "givenName": "Yo", 
        "id": "sg:person.0675130400.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675130400.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Science and Engineering, Waseda University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyashita", 
        "givenName": "Tomoyuki", 
        "id": "sg:person.01021106734.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021106734.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Science and Engineering, Waseda University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujie", 
        "givenName": "G. Masakatsu", 
        "id": "sg:person.0746275711.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746275711.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.pbiomolbio.2010.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000306027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2257-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004033110", 
          "https://doi.org/10.1007/978-1-4757-2257-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2257-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004033110", 
          "https://doi.org/10.1007/978-1-4757-2257-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3sm50552a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007335276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1299/jbse.7.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007872280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017498538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.02.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021866240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-4-431-54094-6_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027280645", 
          "https://doi.org/10.1007/978-4-431-54094-6_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173469802000403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053812919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173469802000403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053812919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2000-8926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057404901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/5/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/8/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/8/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/21/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/21/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/24/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/24/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.3204304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062321763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.3204304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062321763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.41.3572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063067934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173469101300201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063748863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173469101300201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063748863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173469301500201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063748897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173469301500201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063748897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0036-36342009000800003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068099340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5333442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077993410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078504067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2013.6610637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078797369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079740638", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.202.1.8988195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083027680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ultsym.2006.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094598180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ultsym.2009.5442044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094981108"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "PURPOSE: Accurate, noninvasive methods are sought for breast tumor detection and diagnosis. In particular, a need for noninvasive techniques that measure both the nonlinear elastic and viscoelastic properties of breast tissue has been identified. For diagnostic purposes, it is important to select a nonlinear viscoelastic model with a small number of parameters that highly correlate with histological structure. However, the combination of conventional viscoelastic models with nonlinear elastic models requires a large number of parameters. A nonlinear viscoelastic model of breast tissue based on a simple equation with few parameters was developed and tested.\nMETHODS: The nonlinear viscoelastic properties of soft tissues in porcine breast were measured experimentally using fresh ex vivo samples. Robotic palpation was used for measurements employed in a finite element model. These measurements were used to calculate nonlinear viscoelastic parameters for fat, fibroglandular breast parenchyma and muscle. The ability of these parameters to distinguish the tissue types was evaluated in a two-step statistical analysis that included Holm's pairwise [Formula: see text] test. The discrimination error rate of a set of parameters was evaluated by the Mahalanobis distance.\nRESULTS: Ex vivo testing in porcine breast revealed significant differences in the nonlinear viscoelastic parameters among combinations of three tissue types. The discrimination error rate was low among all tested combinations of three tissue types.\nCONCLUSION: Although tissue discrimination was not achieved using only a single nonlinear viscoelastic parameter, a set of four nonlinear viscoelastic parameters were able to reliably and accurately discriminate fat, breast fibroglandular tissue and muscle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11548-014-1100-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6108322", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6156219", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041191", 
        "issn": [
          "1861-6410", 
          "1861-6429"
        ], 
        "name": "International Journal of Computer Assisted Radiology and Surgery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties", 
    "pagination": "593-601", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1317a51fcb1c6794ebfeb303a59218ad39f070667eb34ba074bf4251c93d52d1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25073606"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101499225"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11548-014-1100-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004007347"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11548-014-1100-2", 
      "https://app.dimensions.ai/details/publication/pub.1004007347"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11548-014-1100-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-014-1100-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-014-1100-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-014-1100-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-014-1100-2'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      66 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11548-014-1100-2 schema:about N10acf4e2660949b68fbbddae41db98a8
2 N1a4437875b864e779d30029157681f11
3 N1b05ce5670a34de184c243d7a77b405c
4 N33c6d4bcdfd4432fb677aecf8a8039f4
5 N4023de12d8dc485fb593d2419271ed44
6 N8f32ad821cd8409c9deecc8b450977ab
7 Nd220821497ca4f42b4063cdb24b38c0c
8 Nd67063e619f24622a932a2c254d46afb
9 Nda666aa128b64872b6fb539860cac942
10 Ne21dafd1124348a3a1ced8ecaf050892
11 Ne43b111759cc4c7e8325f1f97b2de64f
12 Neb6d2dfa7d98449aab04e6ace72bad19
13 anzsrc-for:09
14 anzsrc-for:0903
15 schema:author N032e6d4decbc4b58afe197ca1119fd89
16 schema:citation sg:pub.10.1007/978-1-4757-2257-4
17 sg:pub.10.1007/978-4-431-54094-6_14
18 https://app.dimensions.ai/details/publication/pub.1079740638
19 https://doi.org/10.1002/mrm.21636
20 https://doi.org/10.1016/j.neuroimage.2009.02.040
21 https://doi.org/10.1016/j.pbiomolbio.2010.09.005
22 https://doi.org/10.1039/c3sm50552a
23 https://doi.org/10.1055/s-2000-8926
24 https://doi.org/10.1088/0031-9155/54/5/006
25 https://doi.org/10.1088/0031-9155/54/8/020
26 https://doi.org/10.1088/0031-9155/55/21/007
27 https://doi.org/10.1088/0031-9155/55/24/007
28 https://doi.org/10.1109/embc.2013.6610637
29 https://doi.org/10.1109/iembs.2009.5333442
30 https://doi.org/10.1109/iembs.2011.6091724
31 https://doi.org/10.1109/ultsym.2006.268
32 https://doi.org/10.1109/ultsym.2009.5442044
33 https://doi.org/10.1121/1.3204304
34 https://doi.org/10.1143/jjap.41.3572
35 https://doi.org/10.1148/radiology.202.1.8988195
36 https://doi.org/10.1177/016173469101300201
37 https://doi.org/10.1177/016173469301500201
38 https://doi.org/10.1177/016173469802000403
39 https://doi.org/10.1299/jbse.7.177
40 https://doi.org/10.1590/s0036-36342009000800003
41 schema:datePublished 2015-05
42 schema:datePublishedReg 2015-05-01
43 schema:description PURPOSE: Accurate, noninvasive methods are sought for breast tumor detection and diagnosis. In particular, a need for noninvasive techniques that measure both the nonlinear elastic and viscoelastic properties of breast tissue has been identified. For diagnostic purposes, it is important to select a nonlinear viscoelastic model with a small number of parameters that highly correlate with histological structure. However, the combination of conventional viscoelastic models with nonlinear elastic models requires a large number of parameters. A nonlinear viscoelastic model of breast tissue based on a simple equation with few parameters was developed and tested. METHODS: The nonlinear viscoelastic properties of soft tissues in porcine breast were measured experimentally using fresh ex vivo samples. Robotic palpation was used for measurements employed in a finite element model. These measurements were used to calculate nonlinear viscoelastic parameters for fat, fibroglandular breast parenchyma and muscle. The ability of these parameters to distinguish the tissue types was evaluated in a two-step statistical analysis that included Holm's pairwise [Formula: see text] test. The discrimination error rate of a set of parameters was evaluated by the Mahalanobis distance. RESULTS: Ex vivo testing in porcine breast revealed significant differences in the nonlinear viscoelastic parameters among combinations of three tissue types. The discrimination error rate was low among all tested combinations of three tissue types. CONCLUSION: Although tissue discrimination was not achieved using only a single nonlinear viscoelastic parameter, a set of four nonlinear viscoelastic parameters were able to reliably and accurately discriminate fat, breast fibroglandular tissue and muscle.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Nb6e1393803d141ffae3b6adf9a6b53c2
48 Neb8af9525baf410ba0a9b5139057f39a
49 sg:journal.1041191
50 schema:name Automated palpation for breast tissue discrimination based on viscoelastic biomechanical properties
51 schema:pagination 593-601
52 schema:productId N02ada868e3474c0e9cb0661648baa509
53 N951ef64f25c1458aa37ab74890418c17
54 N98695462578143d4b19c4ddaded89c96
55 Ned43f7bbd12d48b999865347c4a22c13
56 Nf98c51d34bb0491489068d2103118d4a
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004007347
58 https://doi.org/10.1007/s11548-014-1100-2
59 schema:sdDatePublished 2019-04-10T19:59
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Ned2a4ae6a4a24da0be1c1d6df87f4574
62 schema:url http://link.springer.com/10.1007%2Fs11548-014-1100-2
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N02ada868e3474c0e9cb0661648baa509 schema:name readcube_id
67 schema:value 1317a51fcb1c6794ebfeb303a59218ad39f070667eb34ba074bf4251c93d52d1
68 rdf:type schema:PropertyValue
69 N032e6d4decbc4b58afe197ca1119fd89 rdf:first sg:person.01356310134.47
70 rdf:rest N9aad25d59bb5476abb33f487dba44c62
71 N10acf4e2660949b68fbbddae41db98a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Biomechanical Phenomena
73 rdf:type schema:DefinedTerm
74 N139b681939c442beb5b611c4bd1030cc rdf:first sg:person.01021106734.61
75 rdf:rest Nf7898cd541c0461c9ff7e16ab3c25aa6
76 N1a4437875b864e779d30029157681f11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N1b05ce5670a34de184c243d7a77b405c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Models, Theoretical
81 rdf:type schema:DefinedTerm
82 N33c6d4bcdfd4432fb677aecf8a8039f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Animals
84 rdf:type schema:DefinedTerm
85 N4023de12d8dc485fb593d2419271ed44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Nonlinear Dynamics
87 rdf:type schema:DefinedTerm
88 N8f32ad821cd8409c9deecc8b450977ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Swine
90 rdf:type schema:DefinedTerm
91 N951ef64f25c1458aa37ab74890418c17 schema:name doi
92 schema:value 10.1007/s11548-014-1100-2
93 rdf:type schema:PropertyValue
94 N98695462578143d4b19c4ddaded89c96 schema:name pubmed_id
95 schema:value 25073606
96 rdf:type schema:PropertyValue
97 N9aad25d59bb5476abb33f487dba44c62 rdf:first sg:person.0675130400.81
98 rdf:rest N139b681939c442beb5b611c4bd1030cc
99 Nb6e1393803d141ffae3b6adf9a6b53c2 schema:volumeNumber 10
100 rdf:type schema:PublicationVolume
101 Nd220821497ca4f42b4063cdb24b38c0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Robotics
103 rdf:type schema:DefinedTerm
104 Nd67063e619f24622a932a2c254d46afb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Breast Neoplasms
106 rdf:type schema:DefinedTerm
107 Nda666aa128b64872b6fb539860cac942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Elasticity
109 rdf:type schema:DefinedTerm
110 Ne21dafd1124348a3a1ced8ecaf050892 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Female
112 rdf:type schema:DefinedTerm
113 Ne43b111759cc4c7e8325f1f97b2de64f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Palpation
115 rdf:type schema:DefinedTerm
116 Neb6d2dfa7d98449aab04e6ace72bad19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Breast
118 rdf:type schema:DefinedTerm
119 Neb8af9525baf410ba0a9b5139057f39a schema:issueNumber 5
120 rdf:type schema:PublicationIssue
121 Ned2a4ae6a4a24da0be1c1d6df87f4574 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Ned43f7bbd12d48b999865347c4a22c13 schema:name dimensions_id
124 schema:value pub.1004007347
125 rdf:type schema:PropertyValue
126 Nf7898cd541c0461c9ff7e16ab3c25aa6 rdf:first sg:person.0746275711.56
127 rdf:rest rdf:nil
128 Nf98c51d34bb0491489068d2103118d4a schema:name nlm_unique_id
129 schema:value 101499225
130 rdf:type schema:PropertyValue
131 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
132 schema:name Engineering
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biomedical Engineering
136 rdf:type schema:DefinedTerm
137 sg:grant.6108322 http://pending.schema.org/fundedItem sg:pub.10.1007/s11548-014-1100-2
138 rdf:type schema:MonetaryGrant
139 sg:grant.6156219 http://pending.schema.org/fundedItem sg:pub.10.1007/s11548-014-1100-2
140 rdf:type schema:MonetaryGrant
141 sg:journal.1041191 schema:issn 1861-6410
142 1861-6429
143 schema:name International Journal of Computer Assisted Radiology and Surgery
144 rdf:type schema:Periodical
145 sg:person.01021106734.61 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
146 schema:familyName Miyashita
147 schema:givenName Tomoyuki
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021106734.61
149 rdf:type schema:Person
150 sg:person.01356310134.47 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
151 schema:familyName Tsukune
152 schema:givenName Mariko
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356310134.47
154 rdf:type schema:Person
155 sg:person.0675130400.81 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
156 schema:familyName Kobayashi
157 schema:givenName Yo
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675130400.81
159 rdf:type schema:Person
160 sg:person.0746275711.56 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
161 schema:familyName Fujie
162 schema:givenName G. Masakatsu
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746275711.56
164 rdf:type schema:Person
165 sg:pub.10.1007/978-1-4757-2257-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004033110
166 https://doi.org/10.1007/978-1-4757-2257-4
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/978-4-431-54094-6_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027280645
169 https://doi.org/10.1007/978-4-431-54094-6_14
170 rdf:type schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1079740638 schema:CreativeWork
172 https://doi.org/10.1002/mrm.21636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017498538
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.neuroimage.2009.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021866240
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.pbiomolbio.2010.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000306027
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1039/c3sm50552a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007335276
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1055/s-2000-8926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057404901
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1088/0031-9155/54/5/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027996
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/0031-9155/54/8/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028090
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/0031-9155/55/21/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028415
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1088/0031-9155/55/24/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028488
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/embc.2013.6610637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078797369
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/iembs.2009.5333442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077993410
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/iembs.2011.6091724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078504067
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/ultsym.2006.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094598180
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/ultsym.2009.5442044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094981108
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1121/1.3204304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062321763
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1143/jjap.41.3572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063067934
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiology.202.1.8988195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083027680
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1177/016173469101300201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063748863
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1177/016173469301500201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063748897
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1177/016173469802000403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053812919
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1299/jbse.7.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007872280
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1590/s0036-36342009000800003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068099340
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.5290.e schema:alternateName Waseda University
217 schema:name Faculty of Science and Engineering, Waseda University, Tokyo, Japan
218 Faculty of Science and Engineering/Research Institute of Science and Engineering, Waseda University, Tokyo, Japan
219 Graduate School of Creative Science/Institute of Advanced Active Aging Research, Waseda University, Tokyo, Japan
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...