Enhanced visualisation for minimally invasive surgery View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

Johannes Totz, Kenko Fujii, Peter Mountney, Guang-Zhong Yang

ABSTRACT

PURPOSE: Endoscopes used in minimally invasive surgery provide a limited field of view, thus requiring a high degree of spatial awareness and orientation. Attempts at expanding this small, restricted view with previously observed imagery have been made by researchers and is generally known as image mosaicing or dynamic view expansion. For minimally invasive endoscopy, SLAM-based methods have been shown to have potential values but have yet to address effective visualisation techniques. METHODS: The live endoscopic video feed is expanded with previously observed footage. To this end, a method that highlights the difference between actual camera image and historic data observed earlier is proposed. Old video data is faded out to grey scale to mimic human peripheral vision. Specular highlights are removed with the help of texture synthesis to avoid distracting visual cues. The method is further evaluated on in vivo and phantom sequences by a detailed user study to examine the ability of the user in discerning temporal motion trajectories while visualising the expanded field of view, a feature that is of practical value for enhancing spatial awareness and orientation. RESULTS: The difference between historic data and live video is integrated effectively. The use of a single texture domain generated by planar parameterisation is demonstrated for view expansion. Specular highlights can be removed through texture synthesis without introducing noticeable artefacts. The implicit encoding of motion trajectory of the endoscopic camera visualised by the proposed method facilitates both global awareness and temporal evolution of the scene. CONCLUSIONS: Dynamic view expansion provides more context for navigation and orientation by establishing reference points beyond the camera's field of view. Effective integration of visual cues is paramount for concise visualisation. More... »

PAGES

423-432

References to SciGraph publications

  • 2011-02. Real-time image composition of bladder mosaics in fluorescence endoscopy in COMPUTER SCIENCE - RESEARCH AND DEVELOPMENT
  • 2006. Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2006
  • 2004. Dense 3D Depth Recovery for Soft Tissue Deformation During Robotically Assisted Laparoscopic Surgery in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2004
  • 2008. Dynamic View Expansion for Enhanced Navigation in Natural Orifice Transluminal Endoscopic Surgery in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2008
  • 2010. GPU-Accelerated Robotic Intra-operative Laparoscopic 3D Reconstruction in INFORMATION PROCESSING IN COMPUTER-ASSISTED INTERVENTIONS
  • 2010-12. Automatic Segmentation and Inpainting of Specular Highlights for Endoscopic Imaging in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2008. A Global Approach for Automatic Fibroscopic Video Mosaicing in Minimally Invasive Diagnosis in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2008
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11548-011-0631-z

    DOI

    http://dx.doi.org/10.1007/s11548-011-0631-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029493808

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21688107


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endoscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phantoms, Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surgery, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Video Recording", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "The Hamlyn Centre for Robotic Surgery, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Totz", 
            "givenName": "Johannes", 
            "id": "sg:person.0623456672.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623456672.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "The Hamlyn Centre for Robotic Surgery, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujii", 
            "givenName": "Kenko", 
            "id": "sg:person.01160442153.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160442153.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "The Hamlyn Centre for Robotic Surgery, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mountney", 
            "givenName": "Peter", 
            "id": "sg:person.0702376130.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "The Hamlyn Centre for Robotic Surgery, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Guang-Zhong", 
            "id": "sg:person.01324214223.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324214223.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-85990-1_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000422284", 
              "https://doi.org/10.1007/978-3-540-85990-1_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85990-1_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000422284", 
              "https://doi.org/10.1007/978-3-540-85990-1_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85988-8_101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014529930", 
              "https://doi.org/10.1007/978-3-540-85988-8_101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8396(03)00002-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015311633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8396(03)00002-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015311633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13711-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020153355", 
              "https://doi.org/10.1007/978-3-642-13711-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13711-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020153355", 
              "https://doi.org/10.1007/978-3-642-13711-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/634067.634234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022644698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00450-010-0135-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032927643", 
              "https://doi.org/10.1007/s00450-010-0135-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2010/814319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035341106", 
              "https://doi.org/10.1155/2010/814319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11866565_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043534590", 
              "https://doi.org/10.1007/11866565_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11866565_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043534590", 
              "https://doi.org/10.1007/11866565_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30136-3_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047291475", 
              "https://doi.org/10.1007/978-3-540-30136-3_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30136-3_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047291475", 
              "https://doi.org/10.1007/978-3-540-30136-3_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0956-7976.2004.00720.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050069792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0956-7976.2004.00720.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050069792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/lap.2008.0357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059293486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msp.2010.936728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061423478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/882262.882269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063173524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iembs.2009.5333939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077993918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.1994.323794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093488775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2005.1545433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094387384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2005.1530471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094727003"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-05", 
        "datePublishedReg": "2012-05-01", 
        "description": "PURPOSE: Endoscopes used in minimally invasive surgery provide a limited field of view, thus requiring a high degree of spatial awareness and orientation. Attempts at expanding this small, restricted view with previously observed imagery have been made by researchers and is generally known as image mosaicing or dynamic view expansion. For minimally invasive endoscopy, SLAM-based methods have been shown to have potential values but have yet to address effective visualisation techniques.\nMETHODS: The live endoscopic video feed is expanded with previously observed footage. To this end, a method that highlights the difference between actual camera image and historic data observed earlier is proposed. Old video data is faded out to grey scale to mimic human peripheral vision. Specular highlights are removed with the help of texture synthesis to avoid distracting visual cues. The method is further evaluated on in vivo and phantom sequences by a detailed user study to examine the ability of the user in discerning temporal motion trajectories while visualising the expanded field of view, a feature that is of practical value for enhancing spatial awareness and orientation.\nRESULTS: The difference between historic data and live video is integrated effectively. The use of a single texture domain generated by planar parameterisation is demonstrated for view expansion. Specular highlights can be removed through texture synthesis without introducing noticeable artefacts. The implicit encoding of motion trajectory of the endoscopic camera visualised by the proposed method facilitates both global awareness and temporal evolution of the scene.\nCONCLUSIONS: Dynamic view expansion provides more context for navigation and orientation by establishing reference points beyond the camera's field of view. Effective integration of visual cues is paramount for concise visualisation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11548-011-0631-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2786414", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041191", 
            "issn": [
              "1861-6410", 
              "1861-6429"
            ], 
            "name": "International Journal of Computer Assisted Radiology and Surgery", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Enhanced visualisation for minimally invasive surgery", 
        "pagination": "423-432", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8c812532bfc94caf4c32be0ba712846c7cd7adca38c470e7901557b67da93537"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21688107"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101499225"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11548-011-0631-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029493808"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11548-011-0631-z", 
          "https://app.dimensions.ai/details/publication/pub.1029493808"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11548-011-0631-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11548-011-0631-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11548-011-0631-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11548-011-0631-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11548-011-0631-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11548-011-0631-z schema:about N19ee07b430c9436c9f477eb2a75e7f32
    2 N44314793c78c41c6ab201253b06c1f6c
    3 N6ae7a8bb961f4f058759ce63ccde4bb1
    4 N863096d5229848f4b9e93d4083bbf361
    5 N8ae69637ea484edb9a6e0a6c81e358d0
    6 N96333ffbb7334398beb34391839d636e
    7 Naadbde09a5ab41ffab57ec7be8b5ef10
    8 Nb63ae915fc6b442186886e1737501790
    9 Nce3c172a68474ab98751d1cbb0c6d5f4
    10 anzsrc-for:08
    11 anzsrc-for:0801
    12 schema:author Nd2f4c8264bbf405fbe9b35c16f27cf1c
    13 schema:citation sg:pub.10.1007/11866565_43
    14 sg:pub.10.1007/978-3-540-30136-3_6
    15 sg:pub.10.1007/978-3-540-85988-8_101
    16 sg:pub.10.1007/978-3-540-85990-1_56
    17 sg:pub.10.1007/978-3-642-13711-2_9
    18 sg:pub.10.1007/s00450-010-0135-z
    19 sg:pub.10.1155/2010/814319
    20 https://doi.org/10.1016/s0167-8396(03)00002-5
    21 https://doi.org/10.1089/lap.2008.0357
    22 https://doi.org/10.1109/cvpr.1994.323794
    23 https://doi.org/10.1109/icip.2005.1530471
    24 https://doi.org/10.1109/iembs.2009.5333939
    25 https://doi.org/10.1109/iros.2005.1545433
    26 https://doi.org/10.1109/msp.2010.936728
    27 https://doi.org/10.1111/j.0956-7976.2004.00720.x
    28 https://doi.org/10.1145/634067.634234
    29 https://doi.org/10.1145/882262.882269
    30 schema:datePublished 2012-05
    31 schema:datePublishedReg 2012-05-01
    32 schema:description PURPOSE: Endoscopes used in minimally invasive surgery provide a limited field of view, thus requiring a high degree of spatial awareness and orientation. Attempts at expanding this small, restricted view with previously observed imagery have been made by researchers and is generally known as image mosaicing or dynamic view expansion. For minimally invasive endoscopy, SLAM-based methods have been shown to have potential values but have yet to address effective visualisation techniques. METHODS: The live endoscopic video feed is expanded with previously observed footage. To this end, a method that highlights the difference between actual camera image and historic data observed earlier is proposed. Old video data is faded out to grey scale to mimic human peripheral vision. Specular highlights are removed with the help of texture synthesis to avoid distracting visual cues. The method is further evaluated on in vivo and phantom sequences by a detailed user study to examine the ability of the user in discerning temporal motion trajectories while visualising the expanded field of view, a feature that is of practical value for enhancing spatial awareness and orientation. RESULTS: The difference between historic data and live video is integrated effectively. The use of a single texture domain generated by planar parameterisation is demonstrated for view expansion. Specular highlights can be removed through texture synthesis without introducing noticeable artefacts. The implicit encoding of motion trajectory of the endoscopic camera visualised by the proposed method facilitates both global awareness and temporal evolution of the scene. CONCLUSIONS: Dynamic view expansion provides more context for navigation and orientation by establishing reference points beyond the camera's field of view. Effective integration of visual cues is paramount for concise visualisation.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf Nbac9fcec18924a5cbc90e0c153563e18
    37 Nd68042bfb1464d36b8442bdd1d195ea8
    38 sg:journal.1041191
    39 schema:name Enhanced visualisation for minimally invasive surgery
    40 schema:pagination 423-432
    41 schema:productId N1ad4665f6d2841e08cc1aeca370475cd
    42 N214ed53a33e1435db879447e21d34ba9
    43 N8df416597e234e59a4ffa4f0638fd242
    44 Ne8c5d28239874906848a1f4aa07cc241
    45 Nf5a25674068642dd818e1f353b01bc5c
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029493808
    47 https://doi.org/10.1007/s11548-011-0631-z
    48 schema:sdDatePublished 2019-04-10T19:59
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N6a0e9aeea0bf435fb4655fa58a581da0
    51 schema:url http://link.springer.com/10.1007%2Fs11548-011-0631-z
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N19ee07b430c9436c9f477eb2a75e7f32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    56 schema:name Algorithms
    57 rdf:type schema:DefinedTerm
    58 N1ad4665f6d2841e08cc1aeca370475cd schema:name dimensions_id
    59 schema:value pub.1029493808
    60 rdf:type schema:PropertyValue
    61 N214ed53a33e1435db879447e21d34ba9 schema:name nlm_unique_id
    62 schema:value 101499225
    63 rdf:type schema:PropertyValue
    64 N44314793c78c41c6ab201253b06c1f6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Endoscopy
    66 rdf:type schema:DefinedTerm
    67 N6a0e9aeea0bf435fb4655fa58a581da0 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N6ae7a8bb961f4f058759ce63ccde4bb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Phantoms, Imaging
    71 rdf:type schema:DefinedTerm
    72 N863096d5229848f4b9e93d4083bbf361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Humans
    74 rdf:type schema:DefinedTerm
    75 N8ae69637ea484edb9a6e0a6c81e358d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Reproducibility of Results
    77 rdf:type schema:DefinedTerm
    78 N8d87e3d7b50947a1bb9ed859be282852 rdf:first sg:person.0702376130.54
    79 rdf:rest Na61b09732dbc4702af8637ddeed57ba8
    80 N8df416597e234e59a4ffa4f0638fd242 schema:name readcube_id
    81 schema:value 8c812532bfc94caf4c32be0ba712846c7cd7adca38c470e7901557b67da93537
    82 rdf:type schema:PropertyValue
    83 N96333ffbb7334398beb34391839d636e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Surgery, Computer-Assisted
    85 rdf:type schema:DefinedTerm
    86 Na39f8dfa680440ba8413e503632f2a11 rdf:first sg:person.01160442153.58
    87 rdf:rest N8d87e3d7b50947a1bb9ed859be282852
    88 Na61b09732dbc4702af8637ddeed57ba8 rdf:first sg:person.01324214223.90
    89 rdf:rest rdf:nil
    90 Naadbde09a5ab41ffab57ec7be8b5ef10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Video Recording
    92 rdf:type schema:DefinedTerm
    93 Nb63ae915fc6b442186886e1737501790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Image Interpretation, Computer-Assisted
    95 rdf:type schema:DefinedTerm
    96 Nbac9fcec18924a5cbc90e0c153563e18 schema:issueNumber 3
    97 rdf:type schema:PublicationIssue
    98 Nce3c172a68474ab98751d1cbb0c6d5f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Imaging, Three-Dimensional
    100 rdf:type schema:DefinedTerm
    101 Nd2f4c8264bbf405fbe9b35c16f27cf1c rdf:first sg:person.0623456672.54
    102 rdf:rest Na39f8dfa680440ba8413e503632f2a11
    103 Nd68042bfb1464d36b8442bdd1d195ea8 schema:volumeNumber 7
    104 rdf:type schema:PublicationVolume
    105 Ne8c5d28239874906848a1f4aa07cc241 schema:name doi
    106 schema:value 10.1007/s11548-011-0631-z
    107 rdf:type schema:PropertyValue
    108 Nf5a25674068642dd818e1f353b01bc5c schema:name pubmed_id
    109 schema:value 21688107
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Information and Computing Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Artificial Intelligence and Image Processing
    116 rdf:type schema:DefinedTerm
    117 sg:grant.2786414 http://pending.schema.org/fundedItem sg:pub.10.1007/s11548-011-0631-z
    118 rdf:type schema:MonetaryGrant
    119 sg:journal.1041191 schema:issn 1861-6410
    120 1861-6429
    121 schema:name International Journal of Computer Assisted Radiology and Surgery
    122 rdf:type schema:Periodical
    123 sg:person.01160442153.58 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    124 schema:familyName Fujii
    125 schema:givenName Kenko
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160442153.58
    127 rdf:type schema:Person
    128 sg:person.01324214223.90 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    129 schema:familyName Yang
    130 schema:givenName Guang-Zhong
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324214223.90
    132 rdf:type schema:Person
    133 sg:person.0623456672.54 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    134 schema:familyName Totz
    135 schema:givenName Johannes
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623456672.54
    137 rdf:type schema:Person
    138 sg:person.0702376130.54 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    139 schema:familyName Mountney
    140 schema:givenName Peter
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54
    142 rdf:type schema:Person
    143 sg:pub.10.1007/11866565_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534590
    144 https://doi.org/10.1007/11866565_43
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-540-30136-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047291475
    147 https://doi.org/10.1007/978-3-540-30136-3_6
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-3-540-85988-8_101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014529930
    150 https://doi.org/10.1007/978-3-540-85988-8_101
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-540-85990-1_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000422284
    153 https://doi.org/10.1007/978-3-540-85990-1_56
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/978-3-642-13711-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020153355
    156 https://doi.org/10.1007/978-3-642-13711-2_9
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00450-010-0135-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032927643
    159 https://doi.org/10.1007/s00450-010-0135-z
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1155/2010/814319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035341106
    162 https://doi.org/10.1155/2010/814319
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/s0167-8396(03)00002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015311633
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1089/lap.2008.0357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059293486
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/cvpr.1994.323794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093488775
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/icip.2005.1530471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727003
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/iembs.2009.5333939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077993918
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/iros.2005.1545433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094387384
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/msp.2010.936728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423478
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1111/j.0956-7976.2004.00720.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050069792
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1145/634067.634234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022644698
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1145/882262.882269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063173524
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
    185 schema:name The Hamlyn Centre for Robotic Surgery, Imperial College London, SW7 2AZ, London, UK
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...