MRI, US or real-time virtual sonography in the evaluation of adenomyosis? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05

AUTHORS

Valeria Vinci, Matteo Saldari, Maria Eleonora Sergi, Silvia Bernardo, Giuseppe Rizzo, Maria Grazia Porpora, Carlo Catalano, Lucia Manganaro

ABSTRACT

PURPOSE: Real-time virtual sonography (RVS) allows displaying and synchronizing real-time US and multiplanar reconstruction of MRI images. The purpose of this study was to evaluate the feasibility and ability of RVS to assess adenomyosis since literature shows US itself has a reduced diagnostic accuracy compared to MRI. MATERIALS AND METHODS: This study was conducted over a 4-month period (March-June 2015). We enrolled in the study 52 women with clinical symptoms of dysmenorrhea, methrorragia and infertility. Every patient underwent an endovaginal US examination, followed by a 3T MRI exam and a RVS exam (Hitachi HI Vision Ascendus). The MRI image dataset acquired at the time of the examination was loaded into the fusion system and displayed together with the US images. Both sets of images were then manually synchronized and images were registered using multiple plane MR imaging. Radiologist was asked to report all three examinations separately. RESULTS: On a total of 52 patients, on standard endovaginal US, adenomyosis was detected in 27 cases: of these, 21 presented diffuse adenomyosis, and 6 cases focal form of adenomyosis. MRI detected adenomyosis in 30 cases: 22 of these appeared as diffuse form and 8 as focal form, such as adenomyoma and adenomyotic cyst, thus resulting in 3 misdiagnosed cases on US. RVS confirmed all 22 cases of diffuse adenomyosis and all 8 cases of focal adenomyosis. CONCLUSIONS: Thanks to information from both US and MRI, fusion imaging allows better identification of adenomyosis and could improve the performance of ultrasound operator thus to implement the contribution of TVUS in daily practice. More... »

PAGES

361-368

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7

DOI

http://dx.doi.org/10.1007/s11547-017-0729-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083830733

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28197875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenomyosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vinci", 
        "givenName": "Valeria", 
        "id": "sg:person.0632471413.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632471413.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saldari", 
        "givenName": "Matteo", 
        "id": "sg:person.0704065062.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704065062.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sergi", 
        "givenName": "Maria Eleonora", 
        "id": "sg:person.0771663457.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771663457.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernardo", 
        "givenName": "Silvia", 
        "id": "sg:person.0733631772.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733631772.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Obstetrics and Gynecology, University Roma Tor Vergata, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "Giuseppe", 
        "id": "sg:person.0631726176.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631726176.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Obstetrics and Gynecology, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porpora", 
        "givenName": "Maria Grazia", 
        "id": "sg:person.01014773457.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014773457.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Catalano", 
        "givenName": "Carlo", 
        "id": "sg:person.01250755056.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250755056.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manganaro", 
        "givenName": "Lucia", 
        "id": "sg:person.01154604572.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154604572.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bpobgyn.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009250097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/00016349.2010.512061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012731559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/uog.8900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019971838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-007-9209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027247855", 
          "https://doi.org/10.1007/s00270-007-9209-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-007-9209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027247855", 
          "https://doi.org/10.1007/s00270-007-9209-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01443610500537856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029918274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/uog.14806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029956241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1472-6483(10)60535-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030421684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/uog.14712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034979781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-012-0446-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035256332", 
          "https://doi.org/10.1007/s00270-012-0446-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1447-0756.2010.01189.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035322422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0033956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038516732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/humrep/dei021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039331190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2011.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044208377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/humrep/dei448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048170203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fertnstert.2008.01.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049242287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.311105110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053480524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-7844(95)00193-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054545659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/humrep/16.11.2427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074945755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079191205", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.190.3.8115630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082657978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.199.1.8633139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082886989"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05", 
    "datePublishedReg": "2017-05-01", 
    "description": "PURPOSE: Real-time virtual sonography (RVS) allows displaying and synchronizing real-time US and multiplanar reconstruction of MRI images. The purpose of this study was to evaluate the feasibility and ability of RVS to assess adenomyosis since literature shows US itself has a reduced diagnostic accuracy compared to MRI.\nMATERIALS AND METHODS: This study was conducted over a 4-month period (March-June 2015). We enrolled in the study 52 women with clinical symptoms of dysmenorrhea, methrorragia and infertility. Every patient underwent an endovaginal US examination, followed by a 3T MRI exam and a RVS exam (Hitachi HI Vision Ascendus). The MRI image dataset acquired at the time of the examination was loaded into the fusion system and displayed together with the US images. Both sets of images were then manually synchronized and images were registered using multiple plane MR imaging. Radiologist was asked to report all three examinations separately.\nRESULTS: On a total of 52 patients, on standard endovaginal US, adenomyosis was detected in 27 cases: of these, 21 presented diffuse adenomyosis, and 6 cases focal form of adenomyosis. MRI detected adenomyosis in 30 cases: 22 of these appeared as diffuse form and 8 as focal form, such as adenomyoma and adenomyotic cyst, thus resulting in 3 misdiagnosed cases on US. RVS confirmed all 22 cases of diffuse adenomyosis and all 8 cases of focal adenomyosis.\nCONCLUSIONS: Thanks to information from both US and MRI, fusion imaging allows better identification of adenomyosis and could improve the performance of ultrasound operator thus to implement the contribution of TVUS in daily practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11547-017-0729-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357346", 
        "issn": [
          "0026-4962", 
          "1826-6983"
        ], 
        "name": "La radiologia medica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "name": "MRI, US or real-time virtual sonography in the evaluation of adenomyosis?", 
    "pagination": "361-368", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3e7b40fe45ce927371d5f5662610c173ca42ae288886d0d281f456eda046bc6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28197875"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0177625"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11547-017-0729-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083830733"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11547-017-0729-7", 
      "https://app.dimensions.ai/details/publication/pub.1083830733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11547-017-0729-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      59 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11547-017-0729-7 schema:about N24b01dfefc1f43e5bbf464deb41d08ed
2 N2b87c77c5dc44bfaa93a3cca9590c823
3 N58a643bdaa6d486b99070d0fa2474971
4 N672d2ee22b834a148e84f2c3b29ce450
5 N714c5da8ed7641ab9b14840d5a567c75
6 N8eb28e65a16b4e24a5190fd8e1418ac9
7 N94c40aa49a6640d69addb6a21f65d043
8 Nb2b3ba5ae02440ed9ffbe576828c5b7e
9 Nbec82648d91f437dac853e32f304073d
10 anzsrc-for:08
11 anzsrc-for:0801
12 schema:author N54830dac284d455ebf1f912d144c53f9
13 schema:citation sg:pub.10.1007/s00270-007-9209-0
14 sg:pub.10.1007/s00270-012-0446-5
15 https://app.dimensions.ai/details/publication/pub.1079191205
16 https://doi.org/10.1002/uog.14712
17 https://doi.org/10.1002/uog.14806
18 https://doi.org/10.1002/uog.8900
19 https://doi.org/10.1016/0029-7844(95)00193-u
20 https://doi.org/10.1016/j.bpobgyn.2006.01.005
21 https://doi.org/10.1016/j.ejrad.2011.08.013
22 https://doi.org/10.1016/j.fertnstert.2008.01.096
23 https://doi.org/10.1016/s1472-6483(10)60535-4
24 https://doi.org/10.1080/01443610500537856
25 https://doi.org/10.1093/humrep/16.11.2427
26 https://doi.org/10.1093/humrep/dei021
27 https://doi.org/10.1093/humrep/dei448
28 https://doi.org/10.1111/j.1447-0756.2010.01189.x
29 https://doi.org/10.1148/radiology.190.3.8115630
30 https://doi.org/10.1148/radiology.199.1.8633139
31 https://doi.org/10.1148/rg.311105110
32 https://doi.org/10.1371/journal.pone.0033956
33 https://doi.org/10.3109/00016349.2010.512061
34 schema:datePublished 2017-05
35 schema:datePublishedReg 2017-05-01
36 schema:description PURPOSE: Real-time virtual sonography (RVS) allows displaying and synchronizing real-time US and multiplanar reconstruction of MRI images. The purpose of this study was to evaluate the feasibility and ability of RVS to assess adenomyosis since literature shows US itself has a reduced diagnostic accuracy compared to MRI. MATERIALS AND METHODS: This study was conducted over a 4-month period (March-June 2015). We enrolled in the study 52 women with clinical symptoms of dysmenorrhea, methrorragia and infertility. Every patient underwent an endovaginal US examination, followed by a 3T MRI exam and a RVS exam (Hitachi HI Vision Ascendus). The MRI image dataset acquired at the time of the examination was loaded into the fusion system and displayed together with the US images. Both sets of images were then manually synchronized and images were registered using multiple plane MR imaging. Radiologist was asked to report all three examinations separately. RESULTS: On a total of 52 patients, on standard endovaginal US, adenomyosis was detected in 27 cases: of these, 21 presented diffuse adenomyosis, and 6 cases focal form of adenomyosis. MRI detected adenomyosis in 30 cases: 22 of these appeared as diffuse form and 8 as focal form, such as adenomyoma and adenomyotic cyst, thus resulting in 3 misdiagnosed cases on US. RVS confirmed all 22 cases of diffuse adenomyosis and all 8 cases of focal adenomyosis. CONCLUSIONS: Thanks to information from both US and MRI, fusion imaging allows better identification of adenomyosis and could improve the performance of ultrasound operator thus to implement the contribution of TVUS in daily practice.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N11ae09856226457898088ba3e3b2fb60
41 N906385b799fe4498bcd810ca1bafde06
42 sg:journal.1357346
43 schema:name MRI, US or real-time virtual sonography in the evaluation of adenomyosis?
44 schema:pagination 361-368
45 schema:productId N325240c608be47bba2f09be6f81d1e6a
46 N3bf39d8b259a48adbeabdebf9ee46f14
47 N934851f4851f4481921eac1acd93cdee
48 Nb65ff4c8f2b241f59d5a77943d2bd610
49 Nfe7c95943080499a8362419d79cfa2fb
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083830733
51 https://doi.org/10.1007/s11547-017-0729-7
52 schema:sdDatePublished 2019-04-11T10:21
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nf7e348de60a645238192d7cd095fa64b
55 schema:url https://link.springer.com/10.1007%2Fs11547-017-0729-7
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N078777a0143d49efb333eb93bae2662f rdf:first sg:person.01014773457.13
60 rdf:rest Nb63c59a603bd41e38b4e6a372288aa1b
61 N11ae09856226457898088ba3e3b2fb60 schema:issueNumber 5
62 rdf:type schema:PublicationIssue
63 N13380c15969c4cf4b99bbd479629b7de rdf:first sg:person.0631726176.12
64 rdf:rest N078777a0143d49efb333eb93bae2662f
65 N24b01dfefc1f43e5bbf464deb41d08ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Ultrasonography
67 rdf:type schema:DefinedTerm
68 N2b87c77c5dc44bfaa93a3cca9590c823 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Humans
70 rdf:type schema:DefinedTerm
71 N325240c608be47bba2f09be6f81d1e6a schema:name readcube_id
72 schema:value f3e7b40fe45ce927371d5f5662610c173ca42ae288886d0d281f456eda046bc6
73 rdf:type schema:PropertyValue
74 N3bf39d8b259a48adbeabdebf9ee46f14 schema:name nlm_unique_id
75 schema:value 0177625
76 rdf:type schema:PropertyValue
77 N54830dac284d455ebf1f912d144c53f9 rdf:first sg:person.0632471413.81
78 rdf:rest Nbdf86d44a60943ec81252ad4adfe6b15
79 N58a643bdaa6d486b99070d0fa2474971 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Adenomyosis
81 rdf:type schema:DefinedTerm
82 N672d2ee22b834a148e84f2c3b29ce450 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name User-Computer Interface
84 rdf:type schema:DefinedTerm
85 N714c5da8ed7641ab9b14840d5a567c75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Prospective Studies
87 rdf:type schema:DefinedTerm
88 N71efcb52109f44b28393a64f4a87a491 rdf:first sg:person.0733631772.84
89 rdf:rest N13380c15969c4cf4b99bbd479629b7de
90 N8eb28e65a16b4e24a5190fd8e1418ac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Female
92 rdf:type schema:DefinedTerm
93 N906385b799fe4498bcd810ca1bafde06 schema:volumeNumber 122
94 rdf:type schema:PublicationVolume
95 N934851f4851f4481921eac1acd93cdee schema:name pubmed_id
96 schema:value 28197875
97 rdf:type schema:PropertyValue
98 N94c40aa49a6640d69addb6a21f65d043 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Feasibility Studies
100 rdf:type schema:DefinedTerm
101 Nb0381c059e44439a92f452a5c75ac3a0 rdf:first sg:person.0771663457.35
102 rdf:rest N71efcb52109f44b28393a64f4a87a491
103 Nb1700290a18d4746b78681a7bd63cee5 rdf:first sg:person.01154604572.01
104 rdf:rest rdf:nil
105 Nb2b3ba5ae02440ed9ffbe576828c5b7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Magnetic Resonance Imaging
107 rdf:type schema:DefinedTerm
108 Nb63c59a603bd41e38b4e6a372288aa1b rdf:first sg:person.01250755056.04
109 rdf:rest Nb1700290a18d4746b78681a7bd63cee5
110 Nb65ff4c8f2b241f59d5a77943d2bd610 schema:name doi
111 schema:value 10.1007/s11547-017-0729-7
112 rdf:type schema:PropertyValue
113 Nbdf86d44a60943ec81252ad4adfe6b15 rdf:first sg:person.0704065062.49
114 rdf:rest Nb0381c059e44439a92f452a5c75ac3a0
115 Nbec82648d91f437dac853e32f304073d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Computer Systems
117 rdf:type schema:DefinedTerm
118 Nf7e348de60a645238192d7cd095fa64b schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nfe7c95943080499a8362419d79cfa2fb schema:name dimensions_id
121 schema:value pub.1083830733
122 rdf:type schema:PropertyValue
123 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information and Computing Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
127 schema:name Artificial Intelligence and Image Processing
128 rdf:type schema:DefinedTerm
129 sg:journal.1357346 schema:issn 0026-4962
130 1826-6983
131 schema:name La radiologia medica
132 rdf:type schema:Periodical
133 sg:person.01014773457.13 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
134 schema:familyName Porpora
135 schema:givenName Maria Grazia
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014773457.13
137 rdf:type schema:Person
138 sg:person.01154604572.01 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
139 schema:familyName Manganaro
140 schema:givenName Lucia
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154604572.01
142 rdf:type schema:Person
143 sg:person.01250755056.04 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
144 schema:familyName Catalano
145 schema:givenName Carlo
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250755056.04
147 rdf:type schema:Person
148 sg:person.0631726176.12 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
149 schema:familyName Rizzo
150 schema:givenName Giuseppe
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631726176.12
152 rdf:type schema:Person
153 sg:person.0632471413.81 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
154 schema:familyName Vinci
155 schema:givenName Valeria
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632471413.81
157 rdf:type schema:Person
158 sg:person.0704065062.49 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
159 schema:familyName Saldari
160 schema:givenName Matteo
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704065062.49
162 rdf:type schema:Person
163 sg:person.0733631772.84 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
164 schema:familyName Bernardo
165 schema:givenName Silvia
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733631772.84
167 rdf:type schema:Person
168 sg:person.0771663457.35 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
169 schema:familyName Sergi
170 schema:givenName Maria Eleonora
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771663457.35
172 rdf:type schema:Person
173 sg:pub.10.1007/s00270-007-9209-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027247855
174 https://doi.org/10.1007/s00270-007-9209-0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00270-012-0446-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035256332
177 https://doi.org/10.1007/s00270-012-0446-5
178 rdf:type schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1079191205 schema:CreativeWork
180 https://doi.org/10.1002/uog.14712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034979781
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/uog.14806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029956241
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/uog.8900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019971838
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0029-7844(95)00193-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1054545659
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.bpobgyn.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009250097
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ejrad.2011.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044208377
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.fertnstert.2008.01.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049242287
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s1472-6483(10)60535-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030421684
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/01443610500537856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029918274
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/humrep/16.11.2427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074945755
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/humrep/dei021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039331190
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/humrep/dei448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048170203
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1447-0756.2010.01189.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035322422
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiology.190.3.8115630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082657978
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1148/radiology.199.1.8633139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082886989
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1148/rg.311105110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053480524
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1371/journal.pone.0033956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038516732
213 rdf:type schema:CreativeWork
214 https://doi.org/10.3109/00016349.2010.512061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012731559
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
217 schema:name Department of Obstetrics and Gynecology, University Roma Tor Vergata, Rome, Italy
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
220 schema:name Department of Obstetrics and Gynecology, Umberto I Hospital, “Sapienza” University of Rome, Viale Regina Elena 324, 00168, Rome, Italy
221 Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, “Sapienza” University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...