MRI, US or real-time virtual sonography in the evaluation of adenomyosis? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-15

AUTHORS

Valeria Vinci, Matteo Saldari, Maria Eleonora Sergi, Silvia Bernardo, Giuseppe Rizzo, Maria Grazia Porpora, Carlo Catalano, Lucia Manganaro

ABSTRACT

PurposeReal-time virtual sonography (RVS) allows displaying and synchronizing real-time US and multiplanar reconstruction of MRI images. The purpose of this study was to evaluate the feasibility and ability of RVS to assess adenomyosis since literature shows US itself has a reduced diagnostic accuracy compared to MRI.Materials and methodsThis study was conducted over a 4-month period (March–June 2015). We enrolled in the study 52 women with clinical symptoms of dysmenorrhea, methrorragia and infertility. Every patient underwent an endovaginal US examination, followed by a 3T MRI exam and a RVS exam (Hitachi HI Vision Ascendus). The MRI image dataset acquired at the time of the examination was loaded into the fusion system and displayed together with the US images. Both sets of images were then manually synchronized and images were registered using multiple plane MR imaging. Radiologist was asked to report all three examinations separately.ResultsOn a total of 52 patients, on standard endovaginal US, adenomyosis was detected in 27 cases: of these, 21 presented diffuse adenomyosis, and 6 cases focal form of adenomyosis. MRI detected adenomyosis in 30 cases: 22 of these appeared as diffuse form and 8 as focal form, such as adenomyoma and adenomyotic cyst, thus resulting in 3 misdiagnosed cases on US. RVS confirmed all 22 cases of diffuse adenomyosis and all 8 cases of focal adenomyosis.ConclusionsThanks to information from both US and MRI, fusion imaging allows better identification of adenomyosis and could improve the performance of ultrasound operator thus to implement the contribution of TVUS in daily practice. More... »

PAGES

361-368

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7

DOI

http://dx.doi.org/10.1007/s11547-017-0729-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083830733

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28197875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenomyosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vinci", 
        "givenName": "Valeria", 
        "id": "sg:person.0632471413.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632471413.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saldari", 
        "givenName": "Matteo", 
        "id": "sg:person.0704065062.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704065062.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sergi", 
        "givenName": "Maria Eleonora", 
        "id": "sg:person.0771663457.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771663457.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernardo", 
        "givenName": "Silvia", 
        "id": "sg:person.0733631772.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733631772.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Obstetrics and Gynecology, University Roma Tor Vergata, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Obstetrics and Gynecology, University Roma Tor Vergata, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "Giuseppe", 
        "id": "sg:person.010017570425.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017570425.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Obstetrics and Gynecology, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00168, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Obstetrics and Gynecology, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porpora", 
        "givenName": "Maria Grazia", 
        "id": "sg:person.01014773457.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014773457.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Catalano", 
        "givenName": "Carlo", 
        "id": "sg:person.01250755056.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250755056.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, \u201cSapienza\u201d University of Rome, Viale Regina Elena 324, 00161, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manganaro", 
        "givenName": "Lucia", 
        "id": "sg:person.01154604572.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154604572.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00270-012-0446-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035256332", 
          "https://doi.org/10.1007/s00270-012-0446-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-007-9209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027247855", 
          "https://doi.org/10.1007/s00270-007-9209-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-15", 
    "datePublishedReg": "2017-02-15", 
    "description": "PurposeReal-time virtual sonography (RVS) allows displaying and synchronizing real-time US and multiplanar reconstruction of MRI images. The purpose of this study was to evaluate the feasibility and ability of RVS to assess adenomyosis since literature shows US itself has a reduced diagnostic accuracy compared to MRI.Materials and methodsThis study was conducted over a 4-month period (March\u2013June 2015). We enrolled in the study 52 women with clinical symptoms of dysmenorrhea, methrorragia and infertility. Every patient underwent an endovaginal US examination, followed by a 3T MRI exam and a RVS exam (Hitachi HI Vision Ascendus). The MRI image dataset acquired at the time of the examination was loaded into the fusion system and displayed together with the US images. Both sets of images were then manually synchronized and images were registered using multiple plane MR imaging. Radiologist was asked to report all three examinations separately.ResultsOn a total of 52 patients, on standard endovaginal US, adenomyosis was detected in 27 cases: of these, 21 presented diffuse adenomyosis, and 6 cases focal form of adenomyosis. MRI detected adenomyosis in 30 cases: 22 of these appeared as diffuse form and 8 as focal form, such as adenomyoma and adenomyotic cyst, thus resulting in 3 misdiagnosed cases on US. RVS confirmed all 22 cases of diffuse adenomyosis and all 8 cases of focal adenomyosis.ConclusionsThanks to information from both US and MRI, fusion imaging allows better identification of adenomyosis and could improve the performance of ultrasound operator thus to implement the contribution of TVUS in daily practice.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11547-017-0729-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1371234", 
        "issn": [
          "0026-4962", 
          "1826-6983"
        ], 
        "name": "La radiologia medica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "keywords": [
      "diffuse adenomyosis", 
      "focal form", 
      "virtual sonography", 
      "real-time virtual sonography", 
      "evaluation of adenomyosis", 
      "real-time US", 
      "adenomyotic cyst", 
      "clinical symptoms", 
      "US examination", 
      "focal adenomyosis", 
      "adenomyosis", 
      "multiplanar reconstruction", 
      "MRI exams", 
      "fusion imaging", 
      "diffuse form", 
      "diagnostic accuracy", 
      "ultrasound operators", 
      "daily practice", 
      "MRI", 
      "patients", 
      "sonography", 
      "endovaginal US", 
      "examination", 
      "MRI image dataset", 
      "better identification", 
      "MRI images", 
      "exam", 
      "dysmenorrhea", 
      "adenomyoma", 
      "infertility", 
      "symptoms", 
      "cases", 
      "US images", 
      "TVUS", 
      "cysts", 
      "RVS", 
      "women", 
      "radiologists", 
      "ResultsOn", 
      "total", 
      "study", 
      "imaging", 
      "MR", 
      "period", 
      "evaluation", 
      "uses", 
      "reconstruction", 
      "practice", 
      "purpose", 
      "literature", 
      "form", 
      "ability", 
      "identification", 
      "feasibility", 
      "time", 
      "images", 
      "information", 
      "materials", 
      "set of images", 
      "contribution", 
      "system", 
      "accuracy", 
      "plane MR", 
      "performance", 
      "datasets", 
      "fusion system", 
      "set", 
      "image datasets", 
      "operators", 
      "PurposeReal-time virtual sonography", 
      "ability of RVS", 
      "study 52 women", 
      "methrorragia", 
      "endovaginal US examination", 
      "RVS exam", 
      "multiple plane MR", 
      "standard endovaginal US", 
      "cases focal form", 
      "ConclusionsThanks", 
      "contribution of TVUS"
    ], 
    "name": "MRI, US or real-time virtual sonography in the evaluation of adenomyosis?", 
    "pagination": "361-368", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083830733"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11547-017-0729-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28197875"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11547-017-0729-7", 
      "https://app.dimensions.ai/details/publication/pub.1083830733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_755.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11547-017-0729-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11547-017-0729-7'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      117 URIs      107 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11547-017-0729-7 schema:about N203a7a73aee34f3880cee8d44d51ddb9
2 N68e39629a2e049618cd4c8919a09e55c
3 N749cc8b23c364c188dc8fbe292baf668
4 N991bac2ddb144f12b73a4944aead3dee
5 Nab0b062679f3425ea6d83fb8fe33aa05
6 Nb6a0f7a8c55f4db19411d0557b55518d
7 Nbb214598a0f84a6fba856ec4d9353320
8 Nc484409ee26c4758a343b89e565a17e0
9 Nde7f570b96434c3aaa199a1a7232d5ee
10 anzsrc-for:08
11 anzsrc-for:0801
12 schema:author N4ecf572c933f48e29a7fdbbb03d3ba2f
13 schema:citation sg:pub.10.1007/s00270-007-9209-0
14 sg:pub.10.1007/s00270-012-0446-5
15 schema:datePublished 2017-02-15
16 schema:datePublishedReg 2017-02-15
17 schema:description PurposeReal-time virtual sonography (RVS) allows displaying and synchronizing real-time US and multiplanar reconstruction of MRI images. The purpose of this study was to evaluate the feasibility and ability of RVS to assess adenomyosis since literature shows US itself has a reduced diagnostic accuracy compared to MRI.Materials and methodsThis study was conducted over a 4-month period (March–June 2015). We enrolled in the study 52 women with clinical symptoms of dysmenorrhea, methrorragia and infertility. Every patient underwent an endovaginal US examination, followed by a 3T MRI exam and a RVS exam (Hitachi HI Vision Ascendus). The MRI image dataset acquired at the time of the examination was loaded into the fusion system and displayed together with the US images. Both sets of images were then manually synchronized and images were registered using multiple plane MR imaging. Radiologist was asked to report all three examinations separately.ResultsOn a total of 52 patients, on standard endovaginal US, adenomyosis was detected in 27 cases: of these, 21 presented diffuse adenomyosis, and 6 cases focal form of adenomyosis. MRI detected adenomyosis in 30 cases: 22 of these appeared as diffuse form and 8 as focal form, such as adenomyoma and adenomyotic cyst, thus resulting in 3 misdiagnosed cases on US. RVS confirmed all 22 cases of diffuse adenomyosis and all 8 cases of focal adenomyosis.ConclusionsThanks to information from both US and MRI, fusion imaging allows better identification of adenomyosis and could improve the performance of ultrasound operator thus to implement the contribution of TVUS in daily practice.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N1b650a7585454a32a156c4169e3c7359
22 N27f428de29fd4f79ab5f28617e00389b
23 sg:journal.1371234
24 schema:keywords ConclusionsThanks
25 MR
26 MRI
27 MRI exams
28 MRI image dataset
29 MRI images
30 PurposeReal-time virtual sonography
31 RVS
32 RVS exam
33 ResultsOn
34 TVUS
35 US examination
36 US images
37 ability
38 ability of RVS
39 accuracy
40 adenomyoma
41 adenomyosis
42 adenomyotic cyst
43 better identification
44 cases
45 cases focal form
46 clinical symptoms
47 contribution
48 contribution of TVUS
49 cysts
50 daily practice
51 datasets
52 diagnostic accuracy
53 diffuse adenomyosis
54 diffuse form
55 dysmenorrhea
56 endovaginal US
57 endovaginal US examination
58 evaluation
59 evaluation of adenomyosis
60 exam
61 examination
62 feasibility
63 focal adenomyosis
64 focal form
65 form
66 fusion imaging
67 fusion system
68 identification
69 image datasets
70 images
71 imaging
72 infertility
73 information
74 literature
75 materials
76 methrorragia
77 multiplanar reconstruction
78 multiple plane MR
79 operators
80 patients
81 performance
82 period
83 plane MR
84 practice
85 purpose
86 radiologists
87 real-time US
88 real-time virtual sonography
89 reconstruction
90 set
91 set of images
92 sonography
93 standard endovaginal US
94 study
95 study 52 women
96 symptoms
97 system
98 time
99 total
100 ultrasound operators
101 uses
102 virtual sonography
103 women
104 schema:name MRI, US or real-time virtual sonography in the evaluation of adenomyosis?
105 schema:pagination 361-368
106 schema:productId N12047833ba6d43079afbaa48467cc17d
107 N9bb080aff2a14f28afa2ee51929d7bee
108 Na661035f09bd4929aa59aedc2f931ea9
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083830733
110 https://doi.org/10.1007/s11547-017-0729-7
111 schema:sdDatePublished 2021-12-01T19:41
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher Ne8e3991f3f7e4c12a2233cb4970d5df8
114 schema:url https://doi.org/10.1007/s11547-017-0729-7
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N12047833ba6d43079afbaa48467cc17d schema:name dimensions_id
119 schema:value pub.1083830733
120 rdf:type schema:PropertyValue
121 N15ca1826a8634272a7ba4e1b4e4f49d3 rdf:first sg:person.01154604572.01
122 rdf:rest rdf:nil
123 N1b1fb600d3cf4813aa1dc96e90de221f rdf:first sg:person.0704065062.49
124 rdf:rest N4db8bc30d9d346159cdc29496a6cf6b8
125 N1b650a7585454a32a156c4169e3c7359 schema:volumeNumber 122
126 rdf:type schema:PublicationVolume
127 N203a7a73aee34f3880cee8d44d51ddb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Magnetic Resonance Imaging
129 rdf:type schema:DefinedTerm
130 N27f428de29fd4f79ab5f28617e00389b schema:issueNumber 5
131 rdf:type schema:PublicationIssue
132 N3932aad3b6e345ae9758328311b73bf7 rdf:first sg:person.0733631772.84
133 rdf:rest N7b6979b0de6a4df59b7303153b315beb
134 N446647dc18944e4695d85dddc18dcdf3 rdf:first sg:person.01014773457.13
135 rdf:rest Nc5790e88a66c4c2fbedebf794f727825
136 N4db8bc30d9d346159cdc29496a6cf6b8 rdf:first sg:person.0771663457.35
137 rdf:rest N3932aad3b6e345ae9758328311b73bf7
138 N4ecf572c933f48e29a7fdbbb03d3ba2f rdf:first sg:person.0632471413.81
139 rdf:rest N1b1fb600d3cf4813aa1dc96e90de221f
140 N68e39629a2e049618cd4c8919a09e55c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name User-Computer Interface
142 rdf:type schema:DefinedTerm
143 N749cc8b23c364c188dc8fbe292baf668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Female
145 rdf:type schema:DefinedTerm
146 N7b6979b0de6a4df59b7303153b315beb rdf:first sg:person.010017570425.32
147 rdf:rest N446647dc18944e4695d85dddc18dcdf3
148 N991bac2ddb144f12b73a4944aead3dee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Adenomyosis
150 rdf:type schema:DefinedTerm
151 N9bb080aff2a14f28afa2ee51929d7bee schema:name doi
152 schema:value 10.1007/s11547-017-0729-7
153 rdf:type schema:PropertyValue
154 Na661035f09bd4929aa59aedc2f931ea9 schema:name pubmed_id
155 schema:value 28197875
156 rdf:type schema:PropertyValue
157 Nab0b062679f3425ea6d83fb8fe33aa05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Computer Systems
159 rdf:type schema:DefinedTerm
160 Nb6a0f7a8c55f4db19411d0557b55518d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 Nbb214598a0f84a6fba856ec4d9353320 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Feasibility Studies
165 rdf:type schema:DefinedTerm
166 Nc484409ee26c4758a343b89e565a17e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Prospective Studies
168 rdf:type schema:DefinedTerm
169 Nc5790e88a66c4c2fbedebf794f727825 rdf:first sg:person.01250755056.04
170 rdf:rest N15ca1826a8634272a7ba4e1b4e4f49d3
171 Nde7f570b96434c3aaa199a1a7232d5ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Ultrasonography
173 rdf:type schema:DefinedTerm
174 Ne8e3991f3f7e4c12a2233cb4970d5df8 schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
177 schema:name Information and Computing Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
180 schema:name Artificial Intelligence and Image Processing
181 rdf:type schema:DefinedTerm
182 sg:journal.1371234 schema:issn 0026-4962
183 1826-6983
184 schema:name La radiologia medica
185 schema:publisher Springer Nature
186 rdf:type schema:Periodical
187 sg:person.010017570425.32 schema:affiliation grid-institutes:grid.6530.0
188 schema:familyName Rizzo
189 schema:givenName Giuseppe
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017570425.32
191 rdf:type schema:Person
192 sg:person.01014773457.13 schema:affiliation grid-institutes:grid.7841.a
193 schema:familyName Porpora
194 schema:givenName Maria Grazia
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014773457.13
196 rdf:type schema:Person
197 sg:person.01154604572.01 schema:affiliation grid-institutes:grid.7841.a
198 schema:familyName Manganaro
199 schema:givenName Lucia
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154604572.01
201 rdf:type schema:Person
202 sg:person.01250755056.04 schema:affiliation grid-institutes:grid.7841.a
203 schema:familyName Catalano
204 schema:givenName Carlo
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250755056.04
206 rdf:type schema:Person
207 sg:person.0632471413.81 schema:affiliation grid-institutes:grid.7841.a
208 schema:familyName Vinci
209 schema:givenName Valeria
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632471413.81
211 rdf:type schema:Person
212 sg:person.0704065062.49 schema:affiliation grid-institutes:grid.7841.a
213 schema:familyName Saldari
214 schema:givenName Matteo
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704065062.49
216 rdf:type schema:Person
217 sg:person.0733631772.84 schema:affiliation grid-institutes:grid.7841.a
218 schema:familyName Bernardo
219 schema:givenName Silvia
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733631772.84
221 rdf:type schema:Person
222 sg:person.0771663457.35 schema:affiliation grid-institutes:grid.7841.a
223 schema:familyName Sergi
224 schema:givenName Maria Eleonora
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771663457.35
226 rdf:type schema:Person
227 sg:pub.10.1007/s00270-007-9209-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027247855
228 https://doi.org/10.1007/s00270-007-9209-0
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s00270-012-0446-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035256332
231 https://doi.org/10.1007/s00270-012-0446-5
232 rdf:type schema:CreativeWork
233 grid-institutes:grid.6530.0 schema:alternateName Department of Obstetrics and Gynecology, University Roma Tor Vergata, Rome, Italy
234 schema:name Department of Obstetrics and Gynecology, University Roma Tor Vergata, Rome, Italy
235 rdf:type schema:Organization
236 grid-institutes:grid.7841.a schema:alternateName Department of Obstetrics and Gynecology, Umberto I Hospital, “Sapienza” University of Rome, Viale Regina Elena 324, 00168, Rome, Italy
237 Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, “Sapienza” University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
238 schema:name Department of Obstetrics and Gynecology, Umberto I Hospital, “Sapienza” University of Rome, Viale Regina Elena 324, 00168, Rome, Italy
239 Department of Radiological Oncological and Anatomopathological Sciences, Umberto I Hospital, “Sapienza” University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...