Preliminary experience with abdominal dual-energy CT (DECT): true versus virtual nonenhanced images of the liver View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09-17

AUTHORS

C. N. De Cecco, V. Buffa, S. Fedeli, A. Vallone, R. Ruopoli, M. Luzietti, V. Miele, M. Rengo, M. Maurizi Enrici, P. Fina, A. Laghi, V. David

ABSTRACT

PurposeThe aim of this work was to compare the quality and noise of true nonenhanced (TNE) and virtual nonenhanced (VNE) images in patients undergoing dualenergy computed tomography (DECT) of the liver.Materials and methodsTwenty consecutive patients (mean age 54.7±19.9 years) prospectively underwent abdominal DECT to assess the liver using a triphasic protocol consisting of precontrast, arterial-phase and portal-phase acquisitions. Exclusion criteria were allergy to iodinated contrast material, impaired renal function and a body mass index (BMI) >35 kg/m2. The DE portal-phase acquisition was performed with automatic dose modulation (CARE Dose 4D). Nonionic iodinated contrast material (Iomeron 400) was administered at 0.625 gI/kg with a flow rate of 3.5 ml/s. Axial VNE images were reconstructed based on the portal data set using a collimation and an increment of 5 mm and were compared with TNE images reconstructed with the same parameters. The average image quality and noise were analysed by two radiologists in separate reading sessions.ResultsNo statistically significant difference (p>0.05) in image quality was observed between VNE (4.00±0.85) and TNE images (4.35±0.58). A sufficient diagnostic quality was found in 95.0% (19/20) of VNE images and in 100% of TNE images. No statistically significant difference (p<0.05) was observed in the average image noise of VNE (9.5±0.7) and TNE (12.3±1.1) images.ConclusionsAbdominal DECT allows acquisition of liver VNE images with similar image quality and lower noise than TNE. Nevertheless, a few technical limitations related to the small field of view of the second detector in patients with a high BMI and heterogeneous iodine subtraction restrict the application of this technique to selected patients only. More... »

PAGES

1258-1266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11547-010-0583-3

DOI

http://dx.doi.org/10.1007/s11547-010-0583-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036388978

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20852956


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iopamidol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Dual-Energy Scanned Projection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.415230.1", 
          "name": [
            "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy", 
            "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Cecco", 
        "givenName": "C. N.", 
        "id": "sg:person.01205213567.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205213567.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buffa", 
        "givenName": "V.", 
        "id": "sg:person.01150552343.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150552343.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedeli", 
        "givenName": "S.", 
        "id": "sg:person.0774511221.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774511221.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vallone", 
        "givenName": "A.", 
        "id": "sg:person.0635106506.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635106506.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruopoli", 
        "givenName": "R.", 
        "id": "sg:person.01300173161.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300173161.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luzietti", 
        "givenName": "M.", 
        "id": "sg:person.01163744561.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163744561.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiologia d\u2019Emergenza, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "Radiologia d\u2019Emergenza, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "V.", 
        "id": "sg:person.01310717311.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310717311.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Polo Pontino, Via Franco Faggiana 34, 04100, Latina, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Polo Pontino, Via Franco Faggiana 34, 04100, Latina, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rengo", 
        "givenName": "M.", 
        "id": "sg:person.0762775600.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762775600.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.415230.1", 
          "name": [
            "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurizi Enrici", 
        "givenName": "M.", 
        "id": "sg:person.0737130661.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737130661.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.415230.1", 
          "name": [
            "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fina", 
        "givenName": "P.", 
        "id": "sg:person.01040165043.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040165043.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Polo Pontino, Via Franco Faggiana 34, 04100, Latina, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Polo Pontino, Via Franco Faggiana 34, 04100, Latina, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laghi", 
        "givenName": "A.", 
        "id": "sg:person.01365203456.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365203456.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.415230.1", 
          "name": [
            "Dipartimento di Scienze Radiologiche, Universit\u00e0 di Roma \u201cSapienza\u201d \u2014 Ospedale Sant\u2019Andrea, Via di Grottarossa 1035, 00189, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "David", 
        "givenName": "V.", 
        "id": "sg:person.01162020223.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162020223.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-008-1122-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048716006", 
          "https://doi.org/10.1007/s00330-008-1122-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0517-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018874898", 
          "https://doi.org/10.1007/s00330-006-0517-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11547-009-0439-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006439337", 
          "https://doi.org/10.1007/s11547-009-0439-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11547-009-0427-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034644349", 
          "https://doi.org/10.1007/s11547-009-0427-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09-17", 
    "datePublishedReg": "2010-09-17", 
    "description": "PurposeThe aim of this work was to compare the quality and noise of true nonenhanced (TNE) and virtual nonenhanced (VNE) images in patients undergoing dualenergy computed tomography (DECT) of the liver.Materials and methodsTwenty consecutive patients (mean age 54.7\u00b119.9 years) prospectively underwent abdominal DECT to assess the liver using a triphasic protocol consisting of precontrast, arterial-phase and portal-phase acquisitions. Exclusion criteria were allergy to iodinated contrast material, impaired renal function and a body mass index (BMI) >35 kg/m2. The DE portal-phase acquisition was performed with automatic dose modulation (CARE Dose 4D). Nonionic iodinated contrast material (Iomeron 400) was administered at 0.625 gI/kg with a flow rate of 3.5 ml/s. Axial VNE images were reconstructed based on the portal data set using a collimation and an increment of 5 mm and were compared with TNE images reconstructed with the same parameters. The average image quality and noise were analysed by two radiologists in separate reading sessions.ResultsNo statistically significant difference (p>0.05) in image quality was observed between VNE (4.00\u00b10.85) and TNE images (4.35\u00b10.58). A sufficient diagnostic quality was found in 95.0% (19/20) of VNE images and in 100% of TNE images. No statistically significant difference (p<0.05) was observed in the average image noise of VNE (9.5\u00b10.7) and TNE (12.3\u00b11.1) images.ConclusionsAbdominal DECT allows acquisition of liver VNE images with similar image quality and lower noise than TNE. Nevertheless, a few technical limitations related to the small field of view of the second detector in patients with a high BMI and heterogeneous iodine subtraction restrict the application of this technique to selected patients only.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11547-010-0583-3", 
    "inLanguage": "it", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1371234", 
        "issn": [
          "0026-4962", 
          "1826-6983"
        ], 
        "name": "La radiologia medica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "115"
      }
    ], 
    "keywords": [
      "body mass index", 
      "dual-energy CT", 
      "abdominal dual-energy CT", 
      "contrast material", 
      "higher body mass index", 
      "VNE images", 
      "MethodsTwenty consecutive patients", 
      "significant differences", 
      "sufficient diagnostic quality", 
      "TNE images", 
      "consecutive patients", 
      "renal function", 
      "mass index", 
      "average image noise", 
      "iodine subtraction", 
      "exclusion criteria", 
      "computed tomography", 
      "patients", 
      "preliminary experience", 
      "protocol consisting", 
      "nonenhanced images", 
      "dose modulation", 
      "liver", 
      "separate reading sessions", 
      "diagnostic quality", 
      "average image quality", 
      "automatic dose modulation", 
      "Gi/", 
      "ResultsNo", 
      "image quality", 
      "precontrast", 
      "CT", 
      "tomography", 
      "radiologists", 
      "similar image quality", 
      "differences", 
      "same parameters", 
      "reading sessions", 
      "technical limitations", 
      "sessions", 
      "aim", 
      "quality", 
      "image noise", 
      "index", 
      "modulation", 
      "criteria", 
      "m2", 
      "rate", 
      "acquisition", 
      "TNE", 
      "experience", 
      "function", 
      "data", 
      "increment", 
      "portal data", 
      "materials", 
      "images", 
      "limitations", 
      "flow rate", 
      "collimation", 
      "VNE", 
      "technique", 
      "small fields", 
      "consisting", 
      "view", 
      "parameters", 
      "nonionics", 
      "subtraction", 
      "work", 
      "applications", 
      "noise", 
      "field", 
      "detector", 
      "low noise", 
      "second detector", 
      "virtual nonenhanced (VNE) images", 
      "dualenergy computed tomography", 
      "triphasic protocol consisting", 
      "portal-phase acquisitions", 
      "DE portal-phase acquisition", 
      "Axial VNE images", 
      "ConclusionsAbdominal DECT", 
      "liver VNE images", 
      "heterogeneous iodine subtraction"
    ], 
    "name": "Preliminary experience with abdominal dual-energy CT (DECT): true versus virtual nonenhanced images of the liver", 
    "pagination": "1258-1266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036388978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11547-010-0583-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20852956"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11547-010-0583-3", 
      "https://app.dimensions.ai/details/publication/pub.1036388978"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11547-010-0583-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11547-010-0583-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11547-010-0583-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11547-010-0583-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11547-010-0583-3'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      22 PREDICATES      124 URIs      112 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11547-010-0583-3 schema:about N40a0681e2e2b439eb04572ab7ceb8206
2 N50fe4fc497cb469094b197908151a6ca
3 N52f5f7046ec44d9d9e925b3f558e76d3
4 N6fdf8a5726f54b22a3e328b1a3aee03a
5 N7c658b9594ae4f0e8430dee2c3f379ff
6 N800bf90260a34da49db1533807301bb2
7 Na75b238e4b12408d859cfbc31fb7e073
8 Na79897ec52524b13956841216a246e76
9 Nbc6683cd212e42efa6f61303d849eb1c
10 Ne98dfdfa26f744558d0c60bac0a5781c
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author Ne26a2f1e99ab4109b798f82b5092bc20
14 schema:citation sg:pub.10.1007/s00330-006-0517-6
15 sg:pub.10.1007/s00330-008-1122-7
16 sg:pub.10.1007/s11547-009-0427-1
17 sg:pub.10.1007/s11547-009-0439-x
18 schema:datePublished 2010-09-17
19 schema:datePublishedReg 2010-09-17
20 schema:description PurposeThe aim of this work was to compare the quality and noise of true nonenhanced (TNE) and virtual nonenhanced (VNE) images in patients undergoing dualenergy computed tomography (DECT) of the liver.Materials and methodsTwenty consecutive patients (mean age 54.7±19.9 years) prospectively underwent abdominal DECT to assess the liver using a triphasic protocol consisting of precontrast, arterial-phase and portal-phase acquisitions. Exclusion criteria were allergy to iodinated contrast material, impaired renal function and a body mass index (BMI) >35 kg/m2. The DE portal-phase acquisition was performed with automatic dose modulation (CARE Dose 4D). Nonionic iodinated contrast material (Iomeron 400) was administered at 0.625 gI/kg with a flow rate of 3.5 ml/s. Axial VNE images were reconstructed based on the portal data set using a collimation and an increment of 5 mm and were compared with TNE images reconstructed with the same parameters. The average image quality and noise were analysed by two radiologists in separate reading sessions.ResultsNo statistically significant difference (p>0.05) in image quality was observed between VNE (4.00±0.85) and TNE images (4.35±0.58). A sufficient diagnostic quality was found in 95.0% (19/20) of VNE images and in 100% of TNE images. No statistically significant difference (p<0.05) was observed in the average image noise of VNE (9.5±0.7) and TNE (12.3±1.1) images.ConclusionsAbdominal DECT allows acquisition of liver VNE images with similar image quality and lower noise than TNE. Nevertheless, a few technical limitations related to the small field of view of the second detector in patients with a high BMI and heterogeneous iodine subtraction restrict the application of this technique to selected patients only.
21 schema:genre article
22 schema:inLanguage it
23 schema:isAccessibleForFree false
24 schema:isPartOf N3a55ab4c4c7c4088a0c99d9764c49f31
25 Nef7b582d526a44c0b171e086493b4c8f
26 sg:journal.1371234
27 schema:keywords Axial VNE images
28 CT
29 ConclusionsAbdominal DECT
30 DE portal-phase acquisition
31 Gi/
32 MethodsTwenty consecutive patients
33 ResultsNo
34 TNE
35 TNE images
36 VNE
37 VNE images
38 abdominal dual-energy CT
39 acquisition
40 aim
41 applications
42 automatic dose modulation
43 average image noise
44 average image quality
45 body mass index
46 collimation
47 computed tomography
48 consecutive patients
49 consisting
50 contrast material
51 criteria
52 data
53 detector
54 diagnostic quality
55 differences
56 dose modulation
57 dual-energy CT
58 dualenergy computed tomography
59 exclusion criteria
60 experience
61 field
62 flow rate
63 function
64 heterogeneous iodine subtraction
65 higher body mass index
66 image noise
67 image quality
68 images
69 increment
70 index
71 iodine subtraction
72 limitations
73 liver
74 liver VNE images
75 low noise
76 m2
77 mass index
78 materials
79 modulation
80 noise
81 nonenhanced images
82 nonionics
83 parameters
84 patients
85 portal data
86 portal-phase acquisitions
87 precontrast
88 preliminary experience
89 protocol consisting
90 quality
91 radiologists
92 rate
93 reading sessions
94 renal function
95 same parameters
96 second detector
97 separate reading sessions
98 sessions
99 significant differences
100 similar image quality
101 small fields
102 subtraction
103 sufficient diagnostic quality
104 technical limitations
105 technique
106 tomography
107 triphasic protocol consisting
108 view
109 virtual nonenhanced (VNE) images
110 work
111 schema:name Preliminary experience with abdominal dual-energy CT (DECT): true versus virtual nonenhanced images of the liver
112 schema:pagination 1258-1266
113 schema:productId N49fca71915f24ed387f7d7b3c18de7eb
114 N579ea654e1624831b05e4e54fa34452c
115 Nd26f3a5f679840a1801f4a0ddbe28be4
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036388978
117 https://doi.org/10.1007/s11547-010-0583-3
118 schema:sdDatePublished 2021-12-01T19:23
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher Nad66d7e9ff1f46f18d35fbb101081c2e
121 schema:url https://doi.org/10.1007/s11547-010-0583-3
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N00f11e25fccc44e0a80b879b09159ed8 rdf:first sg:person.0737130661.13
126 rdf:rest Nb4e68966af5944e9a28a54b3d047b85e
127 N1084a160056243dab32616c32cbd5b84 rdf:first sg:person.0762775600.60
128 rdf:rest N00f11e25fccc44e0a80b879b09159ed8
129 N20bfc6f349f74e3ab4b5def871e1c486 rdf:first sg:person.01300173161.49
130 rdf:rest Naa32964e671e46dabd79b6f18ca21d37
131 N3a55ab4c4c7c4088a0c99d9764c49f31 schema:volumeNumber 115
132 rdf:type schema:PublicationVolume
133 N40a0681e2e2b439eb04572ab7ceb8206 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Prospective Studies
135 rdf:type schema:DefinedTerm
136 N413a63e86bfe489583065f29255a8c7e rdf:first sg:person.01150552343.03
137 rdf:rest N892c39c576ed46eca624ca5ec4fa7db5
138 N49fca71915f24ed387f7d7b3c18de7eb schema:name pubmed_id
139 schema:value 20852956
140 rdf:type schema:PropertyValue
141 N4dc214b737e54aad87a6fd26a83d89ab rdf:first sg:person.0635106506.20
142 rdf:rest N20bfc6f349f74e3ab4b5def871e1c486
143 N50fe4fc497cb469094b197908151a6ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Female
145 rdf:type schema:DefinedTerm
146 N52f5f7046ec44d9d9e925b3f558e76d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Liver Diseases
148 rdf:type schema:DefinedTerm
149 N579ea654e1624831b05e4e54fa34452c schema:name doi
150 schema:value 10.1007/s11547-010-0583-3
151 rdf:type schema:PropertyValue
152 N5dedfc762d6b4816a9adefec4a81006c rdf:first sg:person.01365203456.62
153 rdf:rest N795039bb417f4b6cae0fc55a0b982235
154 N6fdf8a5726f54b22a3e328b1a3aee03a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Tomography, X-Ray Computed
156 rdf:type schema:DefinedTerm
157 N795039bb417f4b6cae0fc55a0b982235 rdf:first sg:person.01162020223.74
158 rdf:rest rdf:nil
159 N7c658b9594ae4f0e8430dee2c3f379ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 N800bf90260a34da49db1533807301bb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Male
164 rdf:type schema:DefinedTerm
165 N892c39c576ed46eca624ca5ec4fa7db5 rdf:first sg:person.0774511221.05
166 rdf:rest N4dc214b737e54aad87a6fd26a83d89ab
167 Na75b238e4b12408d859cfbc31fb7e073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Iopamidol
169 rdf:type schema:DefinedTerm
170 Na79897ec52524b13956841216a246e76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Middle Aged
172 rdf:type schema:DefinedTerm
173 Naa32964e671e46dabd79b6f18ca21d37 rdf:first sg:person.01163744561.31
174 rdf:rest Nb9aaa2afca354a8781f25db5e35b944d
175 Nad66d7e9ff1f46f18d35fbb101081c2e schema:name Springer Nature - SN SciGraph project
176 rdf:type schema:Organization
177 Nb4e68966af5944e9a28a54b3d047b85e rdf:first sg:person.01040165043.99
178 rdf:rest N5dedfc762d6b4816a9adefec4a81006c
179 Nb9aaa2afca354a8781f25db5e35b944d rdf:first sg:person.01310717311.40
180 rdf:rest N1084a160056243dab32616c32cbd5b84
181 Nbc6683cd212e42efa6f61303d849eb1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Contrast Media
183 rdf:type schema:DefinedTerm
184 Nd26f3a5f679840a1801f4a0ddbe28be4 schema:name dimensions_id
185 schema:value pub.1036388978
186 rdf:type schema:PropertyValue
187 Ne26a2f1e99ab4109b798f82b5092bc20 rdf:first sg:person.01205213567.30
188 rdf:rest N413a63e86bfe489583065f29255a8c7e
189 Ne98dfdfa26f744558d0c60bac0a5781c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Radiography, Dual-Energy Scanned Projection
191 rdf:type schema:DefinedTerm
192 Nef7b582d526a44c0b171e086493b4c8f schema:issueNumber 8
193 rdf:type schema:PublicationIssue
194 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
195 schema:name Information and Computing Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
198 schema:name Artificial Intelligence and Image Processing
199 rdf:type schema:DefinedTerm
200 sg:journal.1371234 schema:issn 0026-4962
201 1826-6983
202 schema:name La radiologia medica
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01040165043.99 schema:affiliation grid-institutes:grid.415230.1
206 schema:familyName Fina
207 schema:givenName P.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040165043.99
209 rdf:type schema:Person
210 sg:person.01150552343.03 schema:affiliation grid-institutes:grid.416308.8
211 schema:familyName Buffa
212 schema:givenName V.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150552343.03
214 rdf:type schema:Person
215 sg:person.01162020223.74 schema:affiliation grid-institutes:grid.415230.1
216 schema:familyName David
217 schema:givenName V.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162020223.74
219 rdf:type schema:Person
220 sg:person.01163744561.31 schema:affiliation grid-institutes:grid.416308.8
221 schema:familyName Luzietti
222 schema:givenName M.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163744561.31
224 rdf:type schema:Person
225 sg:person.01205213567.30 schema:affiliation grid-institutes:grid.415230.1
226 schema:familyName De Cecco
227 schema:givenName C. N.
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205213567.30
229 rdf:type schema:Person
230 sg:person.01300173161.49 schema:affiliation grid-institutes:grid.416308.8
231 schema:familyName Ruopoli
232 schema:givenName R.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300173161.49
234 rdf:type schema:Person
235 sg:person.01310717311.40 schema:affiliation grid-institutes:grid.416308.8
236 schema:familyName Miele
237 schema:givenName V.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310717311.40
239 rdf:type schema:Person
240 sg:person.01365203456.62 schema:affiliation grid-institutes:None
241 schema:familyName Laghi
242 schema:givenName A.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365203456.62
244 rdf:type schema:Person
245 sg:person.0635106506.20 schema:affiliation grid-institutes:grid.416308.8
246 schema:familyName Vallone
247 schema:givenName A.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635106506.20
249 rdf:type schema:Person
250 sg:person.0737130661.13 schema:affiliation grid-institutes:grid.415230.1
251 schema:familyName Maurizi Enrici
252 schema:givenName M.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737130661.13
254 rdf:type schema:Person
255 sg:person.0762775600.60 schema:affiliation grid-institutes:None
256 schema:familyName Rengo
257 schema:givenName M.
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762775600.60
259 rdf:type schema:Person
260 sg:person.0774511221.05 schema:affiliation grid-institutes:grid.416308.8
261 schema:familyName Fedeli
262 schema:givenName S.
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774511221.05
264 rdf:type schema:Person
265 sg:pub.10.1007/s00330-006-0517-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018874898
266 https://doi.org/10.1007/s00330-006-0517-6
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s00330-008-1122-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048716006
269 https://doi.org/10.1007/s00330-008-1122-7
270 rdf:type schema:CreativeWork
271 sg:pub.10.1007/s11547-009-0427-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034644349
272 https://doi.org/10.1007/s11547-009-0427-1
273 rdf:type schema:CreativeWork
274 sg:pub.10.1007/s11547-009-0439-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006439337
275 https://doi.org/10.1007/s11547-009-0439-x
276 rdf:type schema:CreativeWork
277 grid-institutes:None schema:alternateName Dipartimento di Scienze Radiologiche, Università di Roma “Sapienza” — Polo Pontino, Via Franco Faggiana 34, 04100, Latina, Italy
278 schema:name Dipartimento di Scienze Radiologiche, Università di Roma “Sapienza” — Polo Pontino, Via Franco Faggiana 34, 04100, Latina, Italy
279 rdf:type schema:Organization
280 grid-institutes:grid.415230.1 schema:alternateName Dipartimento di Scienze Radiologiche, Università di Roma “Sapienza” — Ospedale Sant’Andrea, Via di Grottarossa 1035, 00189, Roma, Italy
281 schema:name Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy
282 Dipartimento di Scienze Radiologiche, Università di Roma “Sapienza” — Ospedale Sant’Andrea, Via di Grottarossa 1035, 00189, Roma, Italy
283 rdf:type schema:Organization
284 grid-institutes:grid.416308.8 schema:alternateName Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy
285 Radiologia d’Emergenza, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy
286 schema:name Dipartimento di Radiologia Cardiovascolare, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy
287 Radiologia d’Emergenza, Ospedale San Camillo-Forlanini, Circonvallazione Gianicolense, 87, 00152, Roma, Italy
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...