Conversion of Existing AFLP Markers to SCAR Markers Linked to Globodera rostochiensis and Phytophthora infestans Resistance Could Be Performed Without ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-07-01

AUTHORS

Kengo Ohbayashi

ABSTRACT

Marker-assisted selection (MAS) is more efficient with single locus marker methods than with the complex multi-locus AFLPTM system. Therefore, a method is described to convert AFLP markers into sequence characterised amplified region (SCAR) markers using arbitrary short primers that were generated based on AFLP markers linked to potato disease resistance genes. In the first step of this method, we synthesised short primers with nucleotides (A, T, G, or C) added to the 3′-ends based on primer sequences of AFLP markers. In the next step, polymerase chain reaction (PCR) analyses were performed with bulked segregant analysis (BSA) by combining the synthesised arbitrary primers with 10-base primers. In the final step, DNA fragments that were associated with disease resistance genes were detected using BSA and were converted into SCAR markers. Using this method, AFLP markers linked respectively to Globodera rostochiensis resistance gene H1 and Phytophthora infestans resistance gene R2 were easily converted to SCAR markers without using AFLP system. The detected SCAR markers were clear and reproducible. Thus, in MAS using SCAR markers, conversion of AFLP markers to SCAR markers using an arbitrary short primer could be an effective breeding tool. More... »

PAGES

649-665

References to SciGraph publications

  • 1993-01. Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato in THEORETICAL AND APPLIED GENETICS
  • 2005-05-21. Characterization and high-resolution mapping of a late blight resistance locus similar to R2 in potato in THEORETICAL AND APPLIED GENETICS
  • 1998-06. Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4 in THEORETICAL AND APPLIED GENETICS
  • 2012-04-24. Two Methods to Easily Obtain Nucleotide Sequences from AFLP Loci of Interest in DATA PRODUCTION AND ANALYSIS IN POPULATION GENOMICS
  • 1966-05. New R genes in Solanum demissum lindl. And their complementary races of Phytophthora infestans (Mont.) de bary in EUPHYTICA
  • 2004-02-25. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis in THEORETICAL AND APPLIED GENETICS
  • 2019-04-09. The Rx gene derived USDA 41956 and Rx1 gene derived CPC 1673 confer equal resistance to the migration of Potato virus X from potato leaves to tubers in EUPHYTICA
  • 2014-10-16. An updated conventional- and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans in EUPHYTICA
  • 2009-08-08. Applied Biotechnology to Combat Late Blight in Potato Caused by Phytophthora Infestans in POTATO RESEARCH
  • 2010-04-22. Conversion of AFLP markers to high-throughput markers in a complex polyploid, sugarcane in MOLECULAR BREEDING
  • 2001-04-01. Conversion of AFLP bands into high-throughput DNA markers in MOLECULAR GENETICS AND GENOMICS
  • 1973-06. Selection from Solanum tuberosum group phureja of genotypes combining high-frequency haploid induction with homozygosity for embryo-spot in EUPHYTICA
  • 2004-10. Conversion of AFLP markers to sequence-specific markers for closely related lines in rice by use of the rice genome sequence in MOLECULAR BREEDING
  • 2005-11. Utilisation of the Commonwealth Potato Collection in potato breeding in EUPHYTICA
  • 1953-10. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives in EUPHYTICA
  • 2006-03-15. Marker-assisted combination of major genes for pathogen resistance in potato in THEORETICAL AND APPLIED GENETICS
  • 1993-02. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce in THEORETICAL AND APPLIED GENETICS
  • 2006-01-05. Mapping the R10 and R11 genes for resistance to late blight (Phytophthora infestans) present in the potato (Solanum tuberosum) R-gene differentials of Black in THEORETICAL AND APPLIED GENETICS
  • 1999-04. A Laboratory Assay for Phytophthora infestans Resistance in Various Solanum Species Reflects the Field Situation in EUROPEAN JOURNAL OF PLANT PATHOLOGY
  • 1996-05. R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI in THEORETICAL AND APPLIED GENETICS
  • 2012-08-02. Isolation and Characterization of Male-Specific DNA Markers in the Rock Bream Oplegnathus fasciatus in MARINE BIOTECHNOLOGY
  • 1992-05. TheR1 gene conferring race-specific resistance toPhytophthora infestans in potato is located on potato chromosome V in MOLECULAR GENETICS AND GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11540-021-09499-9

    DOI

    http://dx.doi.org/10.1007/s11540-021-09499-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139283236


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0706", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Horticultural Production", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nagasaki Agricultural and Forestry Technical Development Center, 3118 Kaidu, Isahaya, 854-0063, Nagasaki, Japan", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Nagasaki Agricultural and Forestry Technical Development Center, 3118 Kaidu, Isahaya, 854-0063, Nagasaki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohbayashi", 
            "givenName": "Kengo", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00221901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030104954", 
              "https://doi.org/10.1007/bf00221901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008710700363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042572931", 
              "https://doi.org/10.1023/a:1008710700363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:molb.0000047791.94870.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041608518", 
              "https://doi.org/10.1023/b:molb.0000047791.94870.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031622725", 
              "https://doi.org/10.1007/s001220050847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00587589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037870808", 
              "https://doi.org/10.1007/bf00587589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-61779-870-2_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040444811", 
              "https://doi.org/10.1007/978-1-61779-870-2_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-014-1276-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012062182", 
              "https://doi.org/10.1007/s10681-014-1276-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-2050-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043055749", 
              "https://doi.org/10.1007/s00122-005-2050-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018149071", 
              "https://doi.org/10.1007/bf00022324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00220911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266040", 
              "https://doi.org/10.1007/bf00220911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00053724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030721382", 
              "https://doi.org/10.1007/bf00053724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1606-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043960292", 
              "https://doi.org/10.1007/s00122-004-1606-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10126-012-9480-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034113473", 
              "https://doi.org/10.1007/s10126-012-9480-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0179-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029360022", 
              "https://doi.org/10.1007/s00122-005-0179-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11540-009-9136-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018769800", 
              "https://doi.org/10.1007/s11540-009-9136-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044248285", 
              "https://doi.org/10.1007/bf00022632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-019-2413-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113330371", 
              "https://doi.org/10.1007/s10681-019-2413-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-005-3881-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016491751", 
              "https://doi.org/10.1007/s10681-005-3881-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00215038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041427615", 
              "https://doi.org/10.1007/bf00215038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-010-9441-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026313289", 
              "https://doi.org/10.1007/s11032-010-9441-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004380000418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002114326", 
              "https://doi.org/10.1007/s004380000418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0248-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000629977", 
              "https://doi.org/10.1007/s00122-006-0248-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-01", 
        "datePublishedReg": "2021-07-01", 
        "description": "Marker-assisted selection (MAS) is more efficient with single locus marker methods than with the complex multi-locus AFLPTM system. Therefore, a method is described to convert AFLP markers into sequence characterised amplified region (SCAR) markers using arbitrary short primers that were generated based on AFLP markers linked to potato disease resistance genes. In the first step of this method, we synthesised short primers with nucleotides (A, T, G, or C) added to the 3\u2032-ends based on primer sequences of AFLP markers. In the next step, polymerase chain reaction (PCR) analyses were performed with bulked segregant analysis (BSA) by combining the synthesised arbitrary primers with 10-base primers. In the final step, DNA fragments that were associated with disease resistance genes were detected using BSA and were converted into SCAR markers. Using this method, AFLP markers linked respectively to Globodera rostochiensis resistance gene H1 and Phytophthora infestans resistance gene R2 were easily converted to SCAR markers without using AFLP system. The detected SCAR markers were clear and reproducible. Thus, in MAS using SCAR markers, conversion of AFLP markers to SCAR markers using an arbitrary short primer could be an effective breeding tool.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11540-021-09499-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1030476", 
            "issn": [
              "0014-3065", 
              "1871-4528"
            ], 
            "name": "Potato Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "64"
          }
        ], 
        "keywords": [
          "disease resistance genes", 
          "SCAR markers", 
          "AFLP markers", 
          "resistance genes", 
          "resistance gene H1", 
          "breeding tools", 
          "segregant analysis", 
          "Globodera rostochiensis", 
          "region (SCAR) markers", 
          "gene H1", 
          "Phytophthora", 
          "arbitrary primers", 
          "marker method", 
          "rostochiensis", 
          "primers", 
          "primer sequences", 
          "MAS", 
          "markers", 
          "genes", 
          "selection", 
          "resistance", 
          "polymerase chain reaction analysis", 
          "R2", 
          "DNA fragments", 
          "conversion", 
          "first step", 
          "gel electrophoresis", 
          "system", 
          "chain reaction analysis", 
          "sequence", 
          "tool", 
          "fragments", 
          "analysis", 
          "next step", 
          "reaction analysis", 
          "method", 
          "H1", 
          "step", 
          "electrophoresis", 
          "final step", 
          "nucleotides", 
          "acrylamide gel electrophoresis", 
          "BSA", 
          "short primer", 
          "single locus marker methods", 
          "locus marker methods", 
          "complex multi-locus AFLPTM system", 
          "multi-locus AFLPTM system", 
          "AFLPTM system", 
          "arbitrary short primers", 
          "potato disease resistance genes", 
          "synthesised arbitrary primers", 
          "Globodera rostochiensis resistance gene H1", 
          "rostochiensis resistance gene H1", 
          "resistance gene R2", 
          "gene R2", 
          "AFLP system", 
          "detected SCAR markers", 
          "effective breeding tool"
        ], 
        "name": "Conversion of Existing AFLP Markers to SCAR Markers Linked to Globodera rostochiensis and Phytophthora infestans Resistance Could Be Performed Without Using Acrylamide Gel Electrophoresis", 
        "pagination": "649-665", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139283236"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11540-021-09499-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11540-021-09499-9", 
          "https://app.dimensions.ai/details/publication/pub.1139283236"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_911.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11540-021-09499-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11540-021-09499-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11540-021-09499-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11540-021-09499-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11540-021-09499-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    204 TRIPLES      22 PREDICATES      106 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11540-021-09499-9 schema:about anzsrc-for:07
    2 anzsrc-for:0706
    3 schema:author N2280a9330629489f929f09e66d787e59
    4 schema:citation sg:pub.10.1007/978-1-61779-870-2_6
    5 sg:pub.10.1007/bf00022324
    6 sg:pub.10.1007/bf00022632
    7 sg:pub.10.1007/bf00053724
    8 sg:pub.10.1007/bf00215038
    9 sg:pub.10.1007/bf00220911
    10 sg:pub.10.1007/bf00221901
    11 sg:pub.10.1007/bf00587589
    12 sg:pub.10.1007/s00122-004-1606-z
    13 sg:pub.10.1007/s00122-005-0179-9
    14 sg:pub.10.1007/s00122-005-2050-4
    15 sg:pub.10.1007/s00122-006-0248-8
    16 sg:pub.10.1007/s001220050847
    17 sg:pub.10.1007/s004380000418
    18 sg:pub.10.1007/s10126-012-9480-1
    19 sg:pub.10.1007/s10681-005-3881-4
    20 sg:pub.10.1007/s10681-014-1276-0
    21 sg:pub.10.1007/s10681-019-2413-6
    22 sg:pub.10.1007/s11032-010-9441-1
    23 sg:pub.10.1007/s11540-009-9136-3
    24 sg:pub.10.1023/a:1008710700363
    25 sg:pub.10.1023/b:molb.0000047791.94870.40
    26 schema:datePublished 2021-07-01
    27 schema:datePublishedReg 2021-07-01
    28 schema:description Marker-assisted selection (MAS) is more efficient with single locus marker methods than with the complex multi-locus AFLPTM system. Therefore, a method is described to convert AFLP markers into sequence characterised amplified region (SCAR) markers using arbitrary short primers that were generated based on AFLP markers linked to potato disease resistance genes. In the first step of this method, we synthesised short primers with nucleotides (A, T, G, or C) added to the 3′-ends based on primer sequences of AFLP markers. In the next step, polymerase chain reaction (PCR) analyses were performed with bulked segregant analysis (BSA) by combining the synthesised arbitrary primers with 10-base primers. In the final step, DNA fragments that were associated with disease resistance genes were detected using BSA and were converted into SCAR markers. Using this method, AFLP markers linked respectively to Globodera rostochiensis resistance gene H1 and Phytophthora infestans resistance gene R2 were easily converted to SCAR markers without using AFLP system. The detected SCAR markers were clear and reproducible. Thus, in MAS using SCAR markers, conversion of AFLP markers to SCAR markers using an arbitrary short primer could be an effective breeding tool.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf Nc164165a2d3e4e2ab3a1def03cdf8921
    33 Nfa1417c0a96246559e817d58973b0d49
    34 sg:journal.1030476
    35 schema:keywords AFLP markers
    36 AFLP system
    37 AFLPTM system
    38 BSA
    39 DNA fragments
    40 Globodera rostochiensis
    41 Globodera rostochiensis resistance gene H1
    42 H1
    43 MAS
    44 Phytophthora
    45 R2
    46 SCAR markers
    47 acrylamide gel electrophoresis
    48 analysis
    49 arbitrary primers
    50 arbitrary short primers
    51 breeding tools
    52 chain reaction analysis
    53 complex multi-locus AFLPTM system
    54 conversion
    55 detected SCAR markers
    56 disease resistance genes
    57 effective breeding tool
    58 electrophoresis
    59 final step
    60 first step
    61 fragments
    62 gel electrophoresis
    63 gene H1
    64 gene R2
    65 genes
    66 locus marker methods
    67 marker method
    68 markers
    69 method
    70 multi-locus AFLPTM system
    71 next step
    72 nucleotides
    73 polymerase chain reaction analysis
    74 potato disease resistance genes
    75 primer sequences
    76 primers
    77 reaction analysis
    78 region (SCAR) markers
    79 resistance
    80 resistance gene H1
    81 resistance gene R2
    82 resistance genes
    83 rostochiensis
    84 rostochiensis resistance gene H1
    85 segregant analysis
    86 selection
    87 sequence
    88 short primer
    89 single locus marker methods
    90 step
    91 synthesised arbitrary primers
    92 system
    93 tool
    94 schema:name Conversion of Existing AFLP Markers to SCAR Markers Linked to Globodera rostochiensis and Phytophthora infestans Resistance Could Be Performed Without Using Acrylamide Gel Electrophoresis
    95 schema:pagination 649-665
    96 schema:productId N01729962facf41eda13c02bf25a18557
    97 N79072faa94ab433db6f29bd8291fd069
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139283236
    99 https://doi.org/10.1007/s11540-021-09499-9
    100 schema:sdDatePublished 2022-01-01T19:01
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher Nbe6104a4f20e4c2099c9af86276bc5f5
    103 schema:url https://doi.org/10.1007/s11540-021-09499-9
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N01729962facf41eda13c02bf25a18557 schema:name doi
    108 schema:value 10.1007/s11540-021-09499-9
    109 rdf:type schema:PropertyValue
    110 N1e36a0e966f04304b3fd56616ba8a35b schema:affiliation grid-institutes:None
    111 schema:familyName Ohbayashi
    112 schema:givenName Kengo
    113 rdf:type schema:Person
    114 N2280a9330629489f929f09e66d787e59 rdf:first N1e36a0e966f04304b3fd56616ba8a35b
    115 rdf:rest rdf:nil
    116 N79072faa94ab433db6f29bd8291fd069 schema:name dimensions_id
    117 schema:value pub.1139283236
    118 rdf:type schema:PropertyValue
    119 Nbe6104a4f20e4c2099c9af86276bc5f5 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Nc164165a2d3e4e2ab3a1def03cdf8921 schema:issueNumber 4
    122 rdf:type schema:PublicationIssue
    123 Nfa1417c0a96246559e817d58973b0d49 schema:volumeNumber 64
    124 rdf:type schema:PublicationVolume
    125 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Agricultural and Veterinary Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0706 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Horticultural Production
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1030476 schema:issn 0014-3065
    132 1871-4528
    133 schema:name Potato Research
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:pub.10.1007/978-1-61779-870-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040444811
    137 https://doi.org/10.1007/978-1-61779-870-2_6
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf00022324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018149071
    140 https://doi.org/10.1007/bf00022324
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf00022632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044248285
    143 https://doi.org/10.1007/bf00022632
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf00053724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030721382
    146 https://doi.org/10.1007/bf00053724
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf00215038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041427615
    149 https://doi.org/10.1007/bf00215038
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00220911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266040
    152 https://doi.org/10.1007/bf00220911
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf00221901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030104954
    155 https://doi.org/10.1007/bf00221901
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf00587589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037870808
    158 https://doi.org/10.1007/bf00587589
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00122-004-1606-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043960292
    161 https://doi.org/10.1007/s00122-004-1606-z
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00122-005-0179-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029360022
    164 https://doi.org/10.1007/s00122-005-0179-9
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00122-005-2050-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043055749
    167 https://doi.org/10.1007/s00122-005-2050-4
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00122-006-0248-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000629977
    170 https://doi.org/10.1007/s00122-006-0248-8
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s001220050847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031622725
    173 https://doi.org/10.1007/s001220050847
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s004380000418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002114326
    176 https://doi.org/10.1007/s004380000418
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s10126-012-9480-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034113473
    179 https://doi.org/10.1007/s10126-012-9480-1
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10681-005-3881-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016491751
    182 https://doi.org/10.1007/s10681-005-3881-4
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10681-014-1276-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012062182
    185 https://doi.org/10.1007/s10681-014-1276-0
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10681-019-2413-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113330371
    188 https://doi.org/10.1007/s10681-019-2413-6
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s11032-010-9441-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026313289
    191 https://doi.org/10.1007/s11032-010-9441-1
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s11540-009-9136-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018769800
    194 https://doi.org/10.1007/s11540-009-9136-3
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1023/a:1008710700363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042572931
    197 https://doi.org/10.1023/a:1008710700363
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1023/b:molb.0000047791.94870.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041608518
    200 https://doi.org/10.1023/b:molb.0000047791.94870.40
    201 rdf:type schema:CreativeWork
    202 grid-institutes:None schema:alternateName Nagasaki Agricultural and Forestry Technical Development Center, 3118 Kaidu, Isahaya, 854-0063, Nagasaki, Japan
    203 schema:name Nagasaki Agricultural and Forestry Technical Development Center, 3118 Kaidu, Isahaya, 854-0063, Nagasaki, Japan
    204 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...