Stochastic Modeling of In Vitro Bactericidal Potency View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-24

AUTHORS

Anita Bogdanov, Péter Kevei, Máté Szalai, Dezső Virok

ABSTRACT

We provide a Galton–Watson model for the growth of a bacterial population in the presence of antibiotics. We assume that bacterial cells either die or duplicate, and the corresponding probabilities depend on the concentration of the antibiotic. Assuming that the mean offspring number is given by m(c)=2/(1+αcβ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(c) = 2 / (1 + \alpha c^\beta )$$\end{document} for some α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta $$\end{document}, where c stands for the antibiotic concentration we obtain weakly consistent, asymptotically normal estimator both for (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document} and for the minimal inhibitory concentration, a relevant parameter in pharmacology. We apply our method to real data, where Chlamydia trachomatis bacterium was treated by azithromycin and ciprofloxacin. For the measurements of Chlamydia growth quantitative polymerase chain reaction technique was used. The 2-parameter model fits remarkably well to the biological data. More... »

PAGES

6

References to SciGraph publications

  • 2006-02-22. Statistical analysis of real-time PCR data in BMC BIOINFORMATICS
  • 2015. Branching Processes in Biology in NONE
  • 2021-02-17. Stochastic Chlamydia Dynamics and Optimal Spread in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2016-11-28. Optimising Antibiotic Usage to Treat Bacterial Infections in SCIENTIFIC REPORTS
  • 2011-05-19. The evolution of plasmid-carried antibiotic resistance in BMC EVOLUTIONARY BIOLOGY
  • 2018-01-03. Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11538-021-00967-4

    DOI

    http://dx.doi.org/10.1007/s11538-021-00967-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142922252

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34817702


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Medical Microbiology and Immunobiology, University of Szeged, D\u00f3m t\u00e9r 10, 6720, Szeged, Hungary", 
              "id": "http://www.grid.ac/institutes/grid.9008.1", 
              "name": [
                "Department of Medical Microbiology and Immunobiology, University of Szeged, D\u00f3m t\u00e9r 10, 6720, Szeged, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bogdanov", 
            "givenName": "Anita", 
            "id": "sg:person.0744050660.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744050660.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bolyai Institute, University of Szeged, Aradi v\u00e9rtan\u00fak tere 1, 6720, Szeged, Hungary", 
              "id": "http://www.grid.ac/institutes/grid.9008.1", 
              "name": [
                "Bolyai Institute, University of Szeged, Aradi v\u00e9rtan\u00fak tere 1, 6720, Szeged, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kevei", 
            "givenName": "P\u00e9ter", 
            "id": "sg:person.01034514447.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034514447.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bolyai Institute, University of Szeged, Aradi v\u00e9rtan\u00fak tere 1, 6720, Szeged, Hungary", 
              "id": "http://www.grid.ac/institutes/grid.9008.1", 
              "name": [
                "Bolyai Institute, University of Szeged, Aradi v\u00e9rtan\u00fak tere 1, 6720, Szeged, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szalai", 
            "givenName": "M\u00e1t\u00e9", 
            "id": "sg:person.011233063155.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011233063155.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Microbiology and Immunobiology, University of Szeged, D\u00f3m t\u00e9r 10, 6720, Szeged, Hungary", 
              "id": "http://www.grid.ac/institutes/grid.9008.1", 
              "name": [
                "Department of Medical Microbiology and Immunobiology, University of Szeged, D\u00f3m t\u00e9r 10, 6720, Szeged, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Virok", 
            "givenName": "Dezs\u0151", 
            "id": "sg:person.01325026037.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325026037.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11538-020-00846-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135410339", 
              "https://doi.org/10.1007/s11538-020-00846-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep37853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021258980", 
              "https://doi.org/10.1038/srep37853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-11-130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021194865", 
              "https://doi.org/10.1186/1471-2148-11-130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-1559-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026985284", 
              "https://doi.org/10.1007/978-1-4939-1559-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02432-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100117418", 
              "https://doi.org/10.1038/s41467-017-02432-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027191760", 
              "https://doi.org/10.1186/1471-2105-7-85"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-24", 
        "datePublishedReg": "2021-11-24", 
        "description": "We provide a Galton\u2013Watson model for the growth of a bacterial population in the presence of antibiotics. We assume that bacterial cells either die or duplicate, and the corresponding probabilities depend on the concentration of the antibiotic. Assuming that the mean offspring number is given by m(c)=2/(1+\u03b1c\u03b2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$m(c) = 2 / (1 + \\alpha c^\\beta )$$\\end{document} for some \u03b1,\u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha , \\beta $$\\end{document}, where c stands for the antibiotic concentration we obtain weakly consistent, asymptotically normal estimator both for (\u03b1,\u03b2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\alpha , \\beta )$$\\end{document} and for the minimal inhibitory concentration, a relevant parameter in pharmacology. We apply our method to real data, where Chlamydia trachomatis bacterium was treated by azithromycin and ciprofloxacin. For the measurements of Chlamydia growth quantitative polymerase chain reaction technique was used. The 2-parameter model fits remarkably well to the biological data.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11538-021-00967-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "84"
          }
        ], 
        "keywords": [
          "mean offspring number", 
          "offspring number", 
          "bacterial populations", 
          "presence of antibiotics", 
          "bacterial cells", 
          "biological data", 
          "quantitative polymerase chain reaction technique", 
          "bactericidal potency", 
          "polymerase chain reaction technique", 
          "chain reaction technique", 
          "bacterium", 
          "minimal inhibitory concentration", 
          "cells", 
          "growth", 
          "inhibitory concentration", 
          "antibiotic concentrations", 
          "population", 
          "concentration", 
          "potency", 
          "presence", 
          "antibiotics", 
          "reaction technique", 
          "pharmacology", 
          "azithromycin", 
          "data", 
          "number", 
          "ciprofloxacin", 
          "Galton-Watson model", 
          "model", 
          "stochastic modeling", 
          "probability", 
          "modeling", 
          "method", 
          "technique", 
          "corresponding probability", 
          "measurements", 
          "relevant parameters", 
          "parameters", 
          "real data", 
          "normal estimators", 
          "estimator", 
          "Chlamydia trachomatis bacterium", 
          "trachomatis bacterium", 
          "Chlamydia growth quantitative polymerase chain reaction technique", 
          "growth quantitative polymerase chain reaction technique", 
          "Vitro Bactericidal Potency"
        ], 
        "name": "Stochastic Modeling of In Vitro Bactericidal Potency", 
        "pagination": "6", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142922252"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11538-021-00967-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34817702"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11538-021-00967-4", 
          "https://app.dimensions.ai/details/publication/pub.1142922252"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_895.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11538-021-00967-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00967-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00967-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00967-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00967-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      22 PREDICATES      78 URIs      64 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11538-021-00967-4 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N345ee2fb11864f99aa96484169d1c975
    4 schema:citation sg:pub.10.1007/978-1-4939-1559-0
    5 sg:pub.10.1007/s11538-020-00846-4
    6 sg:pub.10.1038/s41467-017-02432-0
    7 sg:pub.10.1038/srep37853
    8 sg:pub.10.1186/1471-2105-7-85
    9 sg:pub.10.1186/1471-2148-11-130
    10 schema:datePublished 2021-11-24
    11 schema:datePublishedReg 2021-11-24
    12 schema:description We provide a Galton–Watson model for the growth of a bacterial population in the presence of antibiotics. We assume that bacterial cells either die or duplicate, and the corresponding probabilities depend on the concentration of the antibiotic. Assuming that the mean offspring number is given by m(c)=2/(1+αcβ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(c) = 2 / (1 + \alpha c^\beta )$$\end{document} for some α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta $$\end{document}, where c stands for the antibiotic concentration we obtain weakly consistent, asymptotically normal estimator both for (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document} and for the minimal inhibitory concentration, a relevant parameter in pharmacology. We apply our method to real data, where Chlamydia trachomatis bacterium was treated by azithromycin and ciprofloxacin. For the measurements of Chlamydia growth quantitative polymerase chain reaction technique was used. The 2-parameter model fits remarkably well to the biological data.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N5cf636d6b8e742b7b76c87132284b40a
    17 N6e54299d8b51484c84c78f2b5709bb50
    18 sg:journal.1018370
    19 schema:keywords Chlamydia growth quantitative polymerase chain reaction technique
    20 Chlamydia trachomatis bacterium
    21 Galton-Watson model
    22 Vitro Bactericidal Potency
    23 antibiotic concentrations
    24 antibiotics
    25 azithromycin
    26 bacterial cells
    27 bacterial populations
    28 bactericidal potency
    29 bacterium
    30 biological data
    31 cells
    32 chain reaction technique
    33 ciprofloxacin
    34 concentration
    35 corresponding probability
    36 data
    37 estimator
    38 growth
    39 growth quantitative polymerase chain reaction technique
    40 inhibitory concentration
    41 mean offspring number
    42 measurements
    43 method
    44 minimal inhibitory concentration
    45 model
    46 modeling
    47 normal estimators
    48 number
    49 offspring number
    50 parameters
    51 pharmacology
    52 polymerase chain reaction technique
    53 population
    54 potency
    55 presence
    56 presence of antibiotics
    57 probability
    58 quantitative polymerase chain reaction technique
    59 reaction technique
    60 real data
    61 relevant parameters
    62 stochastic modeling
    63 technique
    64 trachomatis bacterium
    65 schema:name Stochastic Modeling of In Vitro Bactericidal Potency
    66 schema:pagination 6
    67 schema:productId N59373844c3fa4468a8c5d919ac17c763
    68 N71e9e826be454a06beb0c5ca5426534d
    69 Nb40e8c214d3848a0bab8b6d1d71d238c
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142922252
    71 https://doi.org/10.1007/s11538-021-00967-4
    72 schema:sdDatePublished 2022-01-01T19:01
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N6e65728a23e24f559ea3af89132a185b
    75 schema:url https://doi.org/10.1007/s11538-021-00967-4
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N0e0ca1d4f7d042728720035fbf2eea2f rdf:first sg:person.01034514447.95
    80 rdf:rest N6b4865e4ec2448bfbf1b9ad9e86e9d58
    81 N3291649966d2401a9911b272fb8b2c9f rdf:first sg:person.01325026037.99
    82 rdf:rest rdf:nil
    83 N345ee2fb11864f99aa96484169d1c975 rdf:first sg:person.0744050660.45
    84 rdf:rest N0e0ca1d4f7d042728720035fbf2eea2f
    85 N59373844c3fa4468a8c5d919ac17c763 schema:name doi
    86 schema:value 10.1007/s11538-021-00967-4
    87 rdf:type schema:PropertyValue
    88 N5cf636d6b8e742b7b76c87132284b40a schema:issueNumber 1
    89 rdf:type schema:PublicationIssue
    90 N6b4865e4ec2448bfbf1b9ad9e86e9d58 rdf:first sg:person.011233063155.28
    91 rdf:rest N3291649966d2401a9911b272fb8b2c9f
    92 N6e54299d8b51484c84c78f2b5709bb50 schema:volumeNumber 84
    93 rdf:type schema:PublicationVolume
    94 N6e65728a23e24f559ea3af89132a185b schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 N71e9e826be454a06beb0c5ca5426534d schema:name dimensions_id
    97 schema:value pub.1142922252
    98 rdf:type schema:PropertyValue
    99 Nb40e8c214d3848a0bab8b6d1d71d238c schema:name pubmed_id
    100 schema:value 34817702
    101 rdf:type schema:PropertyValue
    102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Biological Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Microbiology
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1018370 schema:issn 0092-8240
    109 1522-9602
    110 schema:name Bulletin of Mathematical Biology
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.01034514447.95 schema:affiliation grid-institutes:grid.9008.1
    114 schema:familyName Kevei
    115 schema:givenName Péter
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034514447.95
    117 rdf:type schema:Person
    118 sg:person.011233063155.28 schema:affiliation grid-institutes:grid.9008.1
    119 schema:familyName Szalai
    120 schema:givenName Máté
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011233063155.28
    122 rdf:type schema:Person
    123 sg:person.01325026037.99 schema:affiliation grid-institutes:grid.9008.1
    124 schema:familyName Virok
    125 schema:givenName Dezső
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325026037.99
    127 rdf:type schema:Person
    128 sg:person.0744050660.45 schema:affiliation grid-institutes:grid.9008.1
    129 schema:familyName Bogdanov
    130 schema:givenName Anita
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744050660.45
    132 rdf:type schema:Person
    133 sg:pub.10.1007/978-1-4939-1559-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026985284
    134 https://doi.org/10.1007/978-1-4939-1559-0
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s11538-020-00846-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135410339
    137 https://doi.org/10.1007/s11538-020-00846-4
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/s41467-017-02432-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100117418
    140 https://doi.org/10.1038/s41467-017-02432-0
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/srep37853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021258980
    143 https://doi.org/10.1038/srep37853
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1186/1471-2105-7-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027191760
    146 https://doi.org/10.1186/1471-2105-7-85
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1186/1471-2148-11-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021194865
    149 https://doi.org/10.1186/1471-2148-11-130
    150 rdf:type schema:CreativeWork
    151 grid-institutes:grid.9008.1 schema:alternateName Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720, Szeged, Hungary
    152 Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, 6720, Szeged, Hungary
    153 schema:name Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720, Szeged, Hungary
    154 Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, 6720, Szeged, Hungary
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...