On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-26

AUTHORS

Justin Eilertsen, Santiago Schnell

ABSTRACT

The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction in the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis–Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5

DOI

http://dx.doi.org/10.1007/s11538-021-00966-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143206910

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34825985


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.298859.7", 
          "name": [
            "Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA", 
            "Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eilertsen", 
        "givenName": "Justin", 
        "id": "sg:person.013240644624.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240644624.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA", 
            "Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 48109, Ann Arbor, MI, USA", 
            "Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schnell", 
        "givenName": "Santiago", 
        "id": "sg:person.01056742320.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056742320.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-12316-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044799678", 
          "https://doi.org/10.1007/978-3-319-12316-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01023640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002948692", 
          "https://doi.org/10.1007/bf01023640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-019-00574-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112093062", 
          "https://doi.org/10.1007/s11538-019-00574-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-015-0218-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024729200", 
          "https://doi.org/10.1186/s12918-015-0218-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-003-0225-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028672268", 
          "https://doi.org/10.1007/s00285-003-0225-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-36399-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125049902", 
          "https://doi.org/10.1007/978-3-030-36399-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-6-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012463424", 
          "https://doi.org/10.1186/1752-0509-6-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-01867-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085330921", 
          "https://doi.org/10.1038/s41598-017-01867-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-38230-8_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126268203", 
          "https://doi.org/10.1007/978-3-030-38230-8_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(88)80057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614903", 
          "https://doi.org/10.1016/s0092-8240(88)80057-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-26", 
    "datePublishedReg": "2021-11-26", 
    "description": "The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction in the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis\u2013Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00966-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2683387", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "singular perturbation theory", 
      "state approximation", 
      "singular perturbation", 
      "geometric singular perturbation theory", 
      "timescale separation", 
      "perturbation theory", 
      "Michaelis-Menten reaction mechanism", 
      "deterministic counterpart", 
      "stochastic regime", 
      "stochastic model", 
      "deterministic model", 
      "approximation", 
      "state reduction", 
      "perturbations", 
      "theory", 
      "extension", 
      "homologous extensions", 
      "model", 
      "quasi", 
      "validity", 
      "analogous conditions", 
      "regime", 
      "enzyme catalyzed reactions", 
      "applications", 
      "conditions", 
      "discrepancy", 
      "counterparts", 
      "possible explanation", 
      "separation", 
      "explanation", 
      "reduction", 
      "enzymatic reaction", 
      "misconceptions", 
      "reaction mechanism", 
      "mechanism", 
      "lens", 
      "reaction", 
      "catalyzed reactions", 
      "paper", 
      "closed enzymatic reactions", 
      "open Michaelis\u2013Menten reaction mechanism", 
      "Stochastic Quasi", 
      "Open Enzyme Catalyzed Reactions"
    ], 
    "name": "On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?", 
    "pagination": "7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143206910"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00966-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34825985"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00966-5", 
      "https://app.dimensions.ai/details/publication/pub.1143206910"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_888.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00966-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      79 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00966-5 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Na046e4eaee5749198f64615ca70efbfc
4 schema:citation sg:pub.10.1007/978-3-030-36399-4
5 sg:pub.10.1007/978-3-030-38230-8_10
6 sg:pub.10.1007/978-3-319-12316-5
7 sg:pub.10.1007/bf01023640
8 sg:pub.10.1007/s00285-003-0225-7
9 sg:pub.10.1007/s11538-019-00574-4
10 sg:pub.10.1016/s0092-8240(88)80057-0
11 sg:pub.10.1038/s41598-017-01867-1
12 sg:pub.10.1186/1752-0509-6-39
13 sg:pub.10.1186/s12918-015-0218-3
14 schema:datePublished 2021-11-26
15 schema:datePublishedReg 2021-11-26
16 schema:description The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction in the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis–Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf Nbecd3f0120404874861cb95667ce4f30
21 Nf009928e3b24435ebb7003e32161753f
22 sg:journal.1018370
23 schema:keywords Michaelis-Menten reaction mechanism
24 Open Enzyme Catalyzed Reactions
25 Stochastic Quasi
26 analogous conditions
27 applications
28 approximation
29 catalyzed reactions
30 closed enzymatic reactions
31 conditions
32 counterparts
33 deterministic counterpart
34 deterministic model
35 discrepancy
36 enzymatic reaction
37 enzyme catalyzed reactions
38 explanation
39 extension
40 geometric singular perturbation theory
41 homologous extensions
42 lens
43 mechanism
44 misconceptions
45 model
46 open Michaelis–Menten reaction mechanism
47 paper
48 perturbation theory
49 perturbations
50 possible explanation
51 quasi
52 reaction
53 reaction mechanism
54 reduction
55 regime
56 separation
57 singular perturbation
58 singular perturbation theory
59 state approximation
60 state reduction
61 stochastic model
62 stochastic regime
63 theory
64 timescale separation
65 validity
66 schema:name On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?
67 schema:pagination 7
68 schema:productId N26697be4457d463fa64b29811bfb3f3f
69 N4a71a758e3b04b438ffe5111cfa29b87
70 Nb7c7708d4423464b8c146a2d28053590
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143206910
72 https://doi.org/10.1007/s11538-021-00966-5
73 schema:sdDatePublished 2022-01-01T19:00
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N17e8e3b7942a4bda9bc2fdf2d0064964
76 schema:url https://doi.org/10.1007/s11538-021-00966-5
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N17e8e3b7942a4bda9bc2fdf2d0064964 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N26697be4457d463fa64b29811bfb3f3f schema:name pubmed_id
83 schema:value 34825985
84 rdf:type schema:PropertyValue
85 N4a71a758e3b04b438ffe5111cfa29b87 schema:name doi
86 schema:value 10.1007/s11538-021-00966-5
87 rdf:type schema:PropertyValue
88 N5cda8982a9654a6ab9fc39cab5124616 rdf:first sg:person.01056742320.15
89 rdf:rest rdf:nil
90 Na046e4eaee5749198f64615ca70efbfc rdf:first sg:person.013240644624.74
91 rdf:rest N5cda8982a9654a6ab9fc39cab5124616
92 Nb7c7708d4423464b8c146a2d28053590 schema:name dimensions_id
93 schema:value pub.1143206910
94 rdf:type schema:PropertyValue
95 Nbecd3f0120404874861cb95667ce4f30 schema:volumeNumber 84
96 rdf:type schema:PublicationVolume
97 Nf009928e3b24435ebb7003e32161753f schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
103 schema:name Applied Mathematics
104 rdf:type schema:DefinedTerm
105 sg:grant.2683387 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00966-5
106 rdf:type schema:MonetaryGrant
107 sg:journal.1018370 schema:issn 0092-8240
108 1522-9602
109 schema:name Bulletin of Mathematical Biology
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.01056742320.15 schema:affiliation grid-institutes:grid.131063.6
113 schema:familyName Schnell
114 schema:givenName Santiago
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056742320.15
116 rdf:type schema:Person
117 sg:person.013240644624.74 schema:affiliation grid-institutes:grid.298859.7
118 schema:familyName Eilertsen
119 schema:givenName Justin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240644624.74
121 rdf:type schema:Person
122 sg:pub.10.1007/978-3-030-36399-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125049902
123 https://doi.org/10.1007/978-3-030-36399-4
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-030-38230-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126268203
126 https://doi.org/10.1007/978-3-030-38230-8_10
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-319-12316-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044799678
129 https://doi.org/10.1007/978-3-319-12316-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf01023640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002948692
132 https://doi.org/10.1007/bf01023640
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00285-003-0225-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028672268
135 https://doi.org/10.1007/s00285-003-0225-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11538-019-00574-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112093062
138 https://doi.org/10.1007/s11538-019-00574-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1016/s0092-8240(88)80057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614903
141 https://doi.org/10.1016/s0092-8240(88)80057-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/s41598-017-01867-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085330921
144 https://doi.org/10.1038/s41598-017-01867-1
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/1752-0509-6-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012463424
147 https://doi.org/10.1186/1752-0509-6-39
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/s12918-015-0218-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024729200
150 https://doi.org/10.1186/s12918-015-0218-3
151 rdf:type schema:CreativeWork
152 grid-institutes:grid.131063.6 schema:alternateName Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA
153 schema:name Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA
154 Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
155 Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
156 rdf:type schema:Organization
157 grid-institutes:grid.298859.7 schema:alternateName Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA
158 schema:name Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
159 Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...