On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-26

AUTHORS

Justin Eilertsen, Santiago Schnell

ABSTRACT

The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction in the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis–Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5

DOI

http://dx.doi.org/10.1007/s11538-021-00966-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143206910

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34825985


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.298859.7", 
          "name": [
            "Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA", 
            "Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eilertsen", 
        "givenName": "Justin", 
        "id": "sg:person.013240644624.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240644624.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA", 
            "Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 48109, Ann Arbor, MI, USA", 
            "Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schnell", 
        "givenName": "Santiago", 
        "id": "sg:person.01056742320.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056742320.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-030-38230-8_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126268203", 
          "https://doi.org/10.1007/978-3-030-38230-8_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12316-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044799678", 
          "https://doi.org/10.1007/978-3-319-12316-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-01867-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085330921", 
          "https://doi.org/10.1038/s41598-017-01867-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01023640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002948692", 
          "https://doi.org/10.1007/bf01023640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-6-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012463424", 
          "https://doi.org/10.1186/1752-0509-6-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(88)80057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614903", 
          "https://doi.org/10.1016/s0092-8240(88)80057-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041191405", 
          "https://doi.org/10.1007/bf02460092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-019-00574-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112093062", 
          "https://doi.org/10.1007/s11538-019-00574-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-003-0225-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028672268", 
          "https://doi.org/10.1007/s00285-003-0225-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-36399-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125049902", 
          "https://doi.org/10.1007/978-3-030-36399-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-17072-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093099545", 
          "https://doi.org/10.1038/s41598-017-17072-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-015-0218-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024729200", 
          "https://doi.org/10.1186/s12918-015-0218-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-26", 
    "datePublishedReg": "2021-11-26", 
    "description": "The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction in the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis\u2013Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00966-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2683387", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "singular perturbation theory", 
      "state approximation", 
      "singular perturbation", 
      "geometric singular perturbation theory", 
      "timescale separation", 
      "perturbation theory", 
      "Michaelis-Menten reaction mechanism", 
      "deterministic counterpart", 
      "stochastic regime", 
      "stochastic model", 
      "deterministic model", 
      "approximation", 
      "state reduction", 
      "homologous extensions", 
      "perturbations", 
      "theory", 
      "extension", 
      "model", 
      "quasi", 
      "validity", 
      "analogous conditions", 
      "regime", 
      "applications", 
      "conditions", 
      "enzyme catalyzed reactions", 
      "counterparts", 
      "discrepancy", 
      "possible explanation", 
      "separation", 
      "explanation", 
      "reduction", 
      "enzymatic reactions", 
      "misconceptions", 
      "mechanism", 
      "lens", 
      "reaction mechanism", 
      "reaction", 
      "catalyzed reactions", 
      "paper"
    ], 
    "name": "On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?", 
    "pagination": "7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143206910"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00966-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34825985"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00966-5", 
      "https://app.dimensions.ai/details/publication/pub.1143206910"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_875.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00966-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00966-5'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      22 PREDICATES      83 URIs      63 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00966-5 schema:about N33aa19afcac64c8384dfbb48e6122504
2 N55cdd8ad50ae4fccaa086979c69fb9a4
3 N8e54c481629a49fdb5ddc45384e8a5aa
4 N99427d495b534fe19578b0eb909f27bb
5 Nde02506f68f74357a7821c331da3362c
6 Nf16be80b3b024d52971205a1cea52cbf
7 anzsrc-for:01
8 anzsrc-for:0102
9 schema:author Na16b81be47c3440a85db371a0d7e696f
10 schema:citation sg:pub.10.1007/978-3-030-36399-4
11 sg:pub.10.1007/978-3-030-38230-8_10
12 sg:pub.10.1007/978-3-319-12316-5
13 sg:pub.10.1007/bf01023640
14 sg:pub.10.1007/bf02460092
15 sg:pub.10.1007/s00285-003-0225-7
16 sg:pub.10.1007/s11538-019-00574-4
17 sg:pub.10.1016/s0092-8240(88)80057-0
18 sg:pub.10.1038/s41598-017-01867-1
19 sg:pub.10.1038/s41598-017-17072-z
20 sg:pub.10.1186/1752-0509-6-39
21 sg:pub.10.1186/s12918-015-0218-3
22 schema:datePublished 2021-11-26
23 schema:datePublishedReg 2021-11-26
24 schema:description The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction in the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis–Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N0e7053e3b9314f0993d4cd65b33105da
29 N6d3753be420e4459bb709314a13df826
30 sg:journal.1018370
31 schema:keywords Michaelis-Menten reaction mechanism
32 analogous conditions
33 applications
34 approximation
35 catalyzed reactions
36 conditions
37 counterparts
38 deterministic counterpart
39 deterministic model
40 discrepancy
41 enzymatic reactions
42 enzyme catalyzed reactions
43 explanation
44 extension
45 geometric singular perturbation theory
46 homologous extensions
47 lens
48 mechanism
49 misconceptions
50 model
51 paper
52 perturbation theory
53 perturbations
54 possible explanation
55 quasi
56 reaction
57 reaction mechanism
58 reduction
59 regime
60 separation
61 singular perturbation
62 singular perturbation theory
63 state approximation
64 state reduction
65 stochastic model
66 stochastic regime
67 theory
68 timescale separation
69 validity
70 schema:name On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?
71 schema:pagination 7
72 schema:productId N37d79f93908d4544b96d3805a3617b93
73 N8773ae116f3644609499729d9994a997
74 Nccdf13251bca440a99ba73bdc0081c17
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143206910
76 https://doi.org/10.1007/s11538-021-00966-5
77 schema:sdDatePublished 2022-05-20T07:38
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N5c57ebcebc1d4427972318a70ba727b2
80 schema:url https://doi.org/10.1007/s11538-021-00966-5
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0e7053e3b9314f0993d4cd65b33105da schema:volumeNumber 84
85 rdf:type schema:PublicationVolume
86 N33aa19afcac64c8384dfbb48e6122504 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Enzymes
88 rdf:type schema:DefinedTerm
89 N37d79f93908d4544b96d3805a3617b93 schema:name doi
90 schema:value 10.1007/s11538-021-00966-5
91 rdf:type schema:PropertyValue
92 N55cdd8ad50ae4fccaa086979c69fb9a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Kinetics
94 rdf:type schema:DefinedTerm
95 N5c57ebcebc1d4427972318a70ba727b2 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N6d3753be420e4459bb709314a13df826 schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N8773ae116f3644609499729d9994a997 schema:name dimensions_id
100 schema:value pub.1143206910
101 rdf:type schema:PropertyValue
102 N8e54c481629a49fdb5ddc45384e8a5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Stochastic Processes
104 rdf:type schema:DefinedTerm
105 N99427d495b534fe19578b0eb909f27bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Mathematical Concepts
107 rdf:type schema:DefinedTerm
108 N9d8fe6ffa7204e16aafa20aaf6587616 rdf:first sg:person.01056742320.15
109 rdf:rest rdf:nil
110 Na16b81be47c3440a85db371a0d7e696f rdf:first sg:person.013240644624.74
111 rdf:rest N9d8fe6ffa7204e16aafa20aaf6587616
112 Nccdf13251bca440a99ba73bdc0081c17 schema:name pubmed_id
113 schema:value 34825985
114 rdf:type schema:PropertyValue
115 Nde02506f68f74357a7821c331da3362c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Models, Biological
117 rdf:type schema:DefinedTerm
118 Nf16be80b3b024d52971205a1cea52cbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Catalysis
120 rdf:type schema:DefinedTerm
121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
122 schema:name Mathematical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
125 schema:name Applied Mathematics
126 rdf:type schema:DefinedTerm
127 sg:grant.2683387 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00966-5
128 rdf:type schema:MonetaryGrant
129 sg:journal.1018370 schema:issn 0092-8240
130 1522-9602
131 schema:name Bulletin of Mathematical Biology
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.01056742320.15 schema:affiliation grid-institutes:grid.131063.6
135 schema:familyName Schnell
136 schema:givenName Santiago
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056742320.15
138 rdf:type schema:Person
139 sg:person.013240644624.74 schema:affiliation grid-institutes:grid.298859.7
140 schema:familyName Eilertsen
141 schema:givenName Justin
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240644624.74
143 rdf:type schema:Person
144 sg:pub.10.1007/978-3-030-36399-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125049902
145 https://doi.org/10.1007/978-3-030-36399-4
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-030-38230-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126268203
148 https://doi.org/10.1007/978-3-030-38230-8_10
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-319-12316-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044799678
151 https://doi.org/10.1007/978-3-319-12316-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01023640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002948692
154 https://doi.org/10.1007/bf01023640
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf02460092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041191405
157 https://doi.org/10.1007/bf02460092
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00285-003-0225-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028672268
160 https://doi.org/10.1007/s00285-003-0225-7
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11538-019-00574-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112093062
163 https://doi.org/10.1007/s11538-019-00574-4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1016/s0092-8240(88)80057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614903
166 https://doi.org/10.1016/s0092-8240(88)80057-0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/s41598-017-01867-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085330921
169 https://doi.org/10.1038/s41598-017-01867-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/s41598-017-17072-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1093099545
172 https://doi.org/10.1038/s41598-017-17072-z
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1752-0509-6-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012463424
175 https://doi.org/10.1186/1752-0509-6-39
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/s12918-015-0218-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024729200
178 https://doi.org/10.1186/s12918-015-0218-3
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.131063.6 schema:alternateName Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA
181 schema:name Department of Biological Sciences, and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA
182 Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
183 Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
184 rdf:type schema:Organization
185 grid-institutes:grid.298859.7 schema:alternateName Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA
186 schema:name Department of Molecular & Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
187 Mathematical Reviews, American Mathematical Society, 416 4th Street, 48103, Ann Arbor, MI, USA
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...