A Mathematical Description of Bacterial Chemotaxis in Response to Two Stimuli View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-27

AUTHORS

Jeungeun Park, Zahra Aminzare

ABSTRACT

Bacteria are often exposed to multiple stimuli in complex environments, and their efficient chemotactic decisions are critical to survive and grow in their native environments. Bacterial responses to the environmental stimuli depend on the ratio of their corresponding chemoreceptors. By incorporating the signaling machinery of individual cells, we analyze the collective motion of a population of Escherichia coli bacteria in response to two stimuli, mainly serine and methyl-aspartate (MeAsp), in a one-dimensional and a two-dimensional environment, which is inspired by experimental results in Y. Kalinin et al., J. Bacteriol. 192(7):1796–1800, 2010. Under suitable conditions, we show that if the ratio of the main chemoreceptors of individual cells, namely Tar/Tsr, is less than a specific threshold, the bacteria move to the gradient of serine, and if the ratio is greater than the threshold, the group of bacteria moves toward the gradient of MeAsp. Finally, we examine the theory with Monte Carlo agent-based simulations and verify that our results qualitatively agree well with the experimental results in Y. Kalinin et al. (2010). More... »

PAGES

9

References to SciGraph publications

  • 1972-10. Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking in NATURE
  • 2013-12-24. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling in JOURNAL OF MATHEMATICAL BIOLOGY
  • 1974-12. Some stochastic processes which arise from a model of the motion of a bacterium in PROBABILITY THEORY AND RELATED FIELDS
  • 2008-07-19. Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2020-03-09. Cellular memory enhances bacterial chemotactic navigation in rugged environments in COMMUNICATIONS PHYSICS
  • 1980-04. Biased random walk models for chemotaxis and related diffusion approximations in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2004-12. Making sense of it all: bacterial chemotaxis in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2017-01-19. Logarithmic sensing in Bacillus subtilis aerotaxis in NPJ SYSTEMS BIOLOGY AND APPLICATIONS
  • 1997-06. Robustness in simple biochemical networks in NATURE
  • 2007-08-12. A concentration-dependent switch in the bacterial response to temperature in NATURE CELL BIOLOGY
  • 1988-06. Models of dispersal in biological systems in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2018-02-05. Mathematical Analysis of the Escherichia coli Chemotaxis Signalling Pathway in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2000-10. Development and applications of a model for cellular response to multiple chemotactic cues in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2016-02-27. Moment-flux models for bacterial chemotaxis in large signal gradients in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2017-01-26. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness in SCIENTIFIC REPORTS
  • 2012-08-04. A “Trimer of Dimers”—Based Model for the Chemotactic Signal Transduction Network in Bacterial Chemotaxis in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2017-10-09. Cell-cell communication enhances bacterial chemotaxis toward external attractants in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11538-021-00965-6

    DOI

    http://dx.doi.org/10.1007/s11538-021-00965-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143322750

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34837544


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, State University of New York at New Paltz, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.264270.5", 
              "name": [
                "Department of Mathematics, State University of New York at New Paltz, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Jeungeun", 
            "id": "sg:person.015754345767.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754345767.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Iowa, Iowa City, IA, USA", 
              "id": "http://www.grid.ac/institutes/grid.214572.7", 
              "name": [
                "Department of Mathematics, University of Iowa, Iowa City, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aminzare", 
            "givenName": "Zahra", 
            "id": "sg:person.012362632161.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362632161.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncb1632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038510737", 
              "https://doi.org/10.1038/ncb1632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-018-0400-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100830700", 
              "https://doi.org/10.1007/s11538-018-0400-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003059937", 
              "https://doi.org/10.1038/43199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002850000035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038749176", 
              "https://doi.org/10.1007/s002850000035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-016-0028-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079403223", 
              "https://doi.org/10.1038/s41598-016-0028-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00275919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010589163", 
              "https://doi.org/10.1007/bf00275919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-016-0981-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027473681", 
              "https://doi.org/10.1007/s00285-016-0981-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017946773", 
              "https://doi.org/10.1038/nrm1524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00277392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042318481", 
              "https://doi.org/10.1007/bf00277392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjsba.2016.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034728166", 
              "https://doi.org/10.1038/npjsba.2016.36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-012-9756-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040348581", 
              "https://doi.org/10.1007/s11538-012-9756-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-13183-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092092400", 
              "https://doi.org/10.1038/s41598-017-13183-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-008-9322-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009221829", 
              "https://doi.org/10.1007/s11538-008-9322-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-013-0748-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009982960", 
              "https://doi.org/10.1007/s00285-013-0748-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42005-020-0312-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125495462", 
              "https://doi.org/10.1038/s42005-020-0312-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00532948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009163493", 
              "https://doi.org/10.1007/bf00532948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/239500a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028194584", 
              "https://doi.org/10.1038/239500a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-27", 
        "datePublishedReg": "2021-11-27", 
        "description": "Bacteria are often exposed to multiple stimuli in complex environments, and their efficient chemotactic decisions are critical to survive and grow in their native environments. Bacterial responses to the environmental stimuli depend on the ratio of their corresponding chemoreceptors. By incorporating the signaling machinery of individual cells, we analyze the collective motion of a population of Escherichia coli bacteria in response to two stimuli, mainly serine and methyl-aspartate (MeAsp), in a one-dimensional and a two-dimensional environment, which is inspired by experimental results in Y. Kalinin et al., J. Bacteriol. 192(7):1796\u20131800, 2010. Under suitable conditions, we show that if the ratio of the main chemoreceptors of individual cells, namely Tar/Tsr, is less than a specific threshold, the bacteria move to the gradient of serine, and if the ratio is greater than the threshold, the group of bacteria moves toward the gradient of MeAsp. Finally, we examine the theory with Monte Carlo agent-based simulations and verify that our results qualitatively agree well with the experimental results in Y. Kalinin et al. (2010).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11538-021-00965-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "84"
          }
        ], 
        "keywords": [
          "individual cells", 
          "group of bacteria", 
          "bacterial response", 
          "bacterial chemotaxis", 
          "native environment", 
          "environmental stimuli", 
          "bacteria", 
          "serine", 
          "Escherichia coli bacteria", 
          "cells", 
          "two-dimensional environment", 
          "multiple stimuli", 
          "machinery", 
          "mathematical description", 
          "coli bacteria", 
          "MeAsp", 
          "chemoreceptors", 
          "collective motion", 
          "chemotaxis", 
          "response", 
          "et al", 
          "gradient", 
          "stimuli", 
          "environment", 
          "experimental results", 
          "suitable conditions", 
          "complex environments", 
          "population", 
          "TSR", 
          "motion", 
          "theory", 
          "specific threshold", 
          "results", 
          "simulations", 
          "agent-based simulation", 
          "description", 
          "al", 
          "conditions", 
          "ratio", 
          "threshold", 
          "group", 
          "decisions", 
          "efficient chemotactic decisions", 
          "chemotactic decisions", 
          "corresponding chemoreceptors", 
          "Kalinin et al", 
          "Bacteriol", 
          "main chemoreceptors", 
          "Tar/Tsr", 
          "gradient of serine", 
          "gradient of MeAsp", 
          "Monte Carlo agent-based simulations", 
          "Carlo agent-based simulations"
        ], 
        "name": "A Mathematical Description of Bacterial Chemotaxis in Response to Two Stimuli", 
        "pagination": "9", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143322750"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11538-021-00965-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34837544"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11538-021-00965-6", 
          "https://app.dimensions.ai/details/publication/pub.1143322750"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_895.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11538-021-00965-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00965-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00965-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00965-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00965-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    193 TRIPLES      22 PREDICATES      96 URIs      71 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11538-021-00965-6 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N477c21a45933458dbda7570c85c6fbcb
    4 schema:citation sg:pub.10.1007/bf00275919
    5 sg:pub.10.1007/bf00277392
    6 sg:pub.10.1007/bf00532948
    7 sg:pub.10.1007/s00285-013-0748-5
    8 sg:pub.10.1007/s00285-016-0981-9
    9 sg:pub.10.1007/s002850000035
    10 sg:pub.10.1007/s11538-008-9322-5
    11 sg:pub.10.1007/s11538-012-9756-7
    12 sg:pub.10.1007/s11538-018-0400-z
    13 sg:pub.10.1038/239500a0
    14 sg:pub.10.1038/43199
    15 sg:pub.10.1038/ncb1632
    16 sg:pub.10.1038/npjsba.2016.36
    17 sg:pub.10.1038/nrm1524
    18 sg:pub.10.1038/s41598-016-0028-x
    19 sg:pub.10.1038/s41598-017-13183-9
    20 sg:pub.10.1038/s42005-020-0312-8
    21 schema:datePublished 2021-11-27
    22 schema:datePublishedReg 2021-11-27
    23 schema:description Bacteria are often exposed to multiple stimuli in complex environments, and their efficient chemotactic decisions are critical to survive and grow in their native environments. Bacterial responses to the environmental stimuli depend on the ratio of their corresponding chemoreceptors. By incorporating the signaling machinery of individual cells, we analyze the collective motion of a population of Escherichia coli bacteria in response to two stimuli, mainly serine and methyl-aspartate (MeAsp), in a one-dimensional and a two-dimensional environment, which is inspired by experimental results in Y. Kalinin et al., J. Bacteriol. 192(7):1796–1800, 2010. Under suitable conditions, we show that if the ratio of the main chemoreceptors of individual cells, namely Tar/Tsr, is less than a specific threshold, the bacteria move to the gradient of serine, and if the ratio is greater than the threshold, the group of bacteria moves toward the gradient of MeAsp. Finally, we examine the theory with Monte Carlo agent-based simulations and verify that our results qualitatively agree well with the experimental results in Y. Kalinin et al. (2010).
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N1ba55ff893614845a2fcbc11fb1d8bd8
    28 Ne8dc044bab5b46d184ebaf5bb9d0a366
    29 sg:journal.1018370
    30 schema:keywords Bacteriol
    31 Carlo agent-based simulations
    32 Escherichia coli bacteria
    33 Kalinin et al
    34 MeAsp
    35 Monte Carlo agent-based simulations
    36 TSR
    37 Tar/Tsr
    38 agent-based simulation
    39 al
    40 bacteria
    41 bacterial chemotaxis
    42 bacterial response
    43 cells
    44 chemoreceptors
    45 chemotactic decisions
    46 chemotaxis
    47 coli bacteria
    48 collective motion
    49 complex environments
    50 conditions
    51 corresponding chemoreceptors
    52 decisions
    53 description
    54 efficient chemotactic decisions
    55 environment
    56 environmental stimuli
    57 et al
    58 experimental results
    59 gradient
    60 gradient of MeAsp
    61 gradient of serine
    62 group
    63 group of bacteria
    64 individual cells
    65 machinery
    66 main chemoreceptors
    67 mathematical description
    68 motion
    69 multiple stimuli
    70 native environment
    71 population
    72 ratio
    73 response
    74 results
    75 serine
    76 simulations
    77 specific threshold
    78 stimuli
    79 suitable conditions
    80 theory
    81 threshold
    82 two-dimensional environment
    83 schema:name A Mathematical Description of Bacterial Chemotaxis in Response to Two Stimuli
    84 schema:pagination 9
    85 schema:productId N6225bffa7e0d4cd187a1fa7dbb3816d9
    86 Ncaeb4f81d6f14fe4ad56357bcf646128
    87 Ndd57ab249f1d4168be8620ad85b949a8
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143322750
    89 https://doi.org/10.1007/s11538-021-00965-6
    90 schema:sdDatePublished 2022-01-01T19:01
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N20dce10a8d6a4d19a8c40d59725acb6b
    93 schema:url https://doi.org/10.1007/s11538-021-00965-6
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N1ba55ff893614845a2fcbc11fb1d8bd8 schema:issueNumber 1
    98 rdf:type schema:PublicationIssue
    99 N20dce10a8d6a4d19a8c40d59725acb6b schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N477c21a45933458dbda7570c85c6fbcb rdf:first sg:person.015754345767.63
    102 rdf:rest N7f9e9f48fb934dc0b9712c346ebf90f6
    103 N6225bffa7e0d4cd187a1fa7dbb3816d9 schema:name dimensions_id
    104 schema:value pub.1143322750
    105 rdf:type schema:PropertyValue
    106 N7f9e9f48fb934dc0b9712c346ebf90f6 rdf:first sg:person.012362632161.45
    107 rdf:rest rdf:nil
    108 Ncaeb4f81d6f14fe4ad56357bcf646128 schema:name doi
    109 schema:value 10.1007/s11538-021-00965-6
    110 rdf:type schema:PropertyValue
    111 Ndd57ab249f1d4168be8620ad85b949a8 schema:name pubmed_id
    112 schema:value 34837544
    113 rdf:type schema:PropertyValue
    114 Ne8dc044bab5b46d184ebaf5bb9d0a366 schema:volumeNumber 84
    115 rdf:type schema:PublicationVolume
    116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Biological Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Microbiology
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1018370 schema:issn 0092-8240
    123 1522-9602
    124 schema:name Bulletin of Mathematical Biology
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.012362632161.45 schema:affiliation grid-institutes:grid.214572.7
    128 schema:familyName Aminzare
    129 schema:givenName Zahra
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362632161.45
    131 rdf:type schema:Person
    132 sg:person.015754345767.63 schema:affiliation grid-institutes:grid.264270.5
    133 schema:familyName Park
    134 schema:givenName Jeungeun
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754345767.63
    136 rdf:type schema:Person
    137 sg:pub.10.1007/bf00275919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010589163
    138 https://doi.org/10.1007/bf00275919
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf00277392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042318481
    141 https://doi.org/10.1007/bf00277392
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf00532948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009163493
    144 https://doi.org/10.1007/bf00532948
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00285-013-0748-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009982960
    147 https://doi.org/10.1007/s00285-013-0748-5
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00285-016-0981-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027473681
    150 https://doi.org/10.1007/s00285-016-0981-9
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s002850000035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038749176
    153 https://doi.org/10.1007/s002850000035
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11538-008-9322-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009221829
    156 https://doi.org/10.1007/s11538-008-9322-5
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s11538-012-9756-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040348581
    159 https://doi.org/10.1007/s11538-012-9756-7
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11538-018-0400-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100830700
    162 https://doi.org/10.1007/s11538-018-0400-z
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/239500a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028194584
    165 https://doi.org/10.1038/239500a0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/43199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003059937
    168 https://doi.org/10.1038/43199
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/ncb1632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038510737
    171 https://doi.org/10.1038/ncb1632
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/npjsba.2016.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034728166
    174 https://doi.org/10.1038/npjsba.2016.36
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nrm1524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017946773
    177 https://doi.org/10.1038/nrm1524
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/s41598-016-0028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079403223
    180 https://doi.org/10.1038/s41598-016-0028-x
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/s41598-017-13183-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092092400
    183 https://doi.org/10.1038/s41598-017-13183-9
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/s42005-020-0312-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125495462
    186 https://doi.org/10.1038/s42005-020-0312-8
    187 rdf:type schema:CreativeWork
    188 grid-institutes:grid.214572.7 schema:alternateName Department of Mathematics, University of Iowa, Iowa City, IA, USA
    189 schema:name Department of Mathematics, University of Iowa, Iowa City, IA, USA
    190 rdf:type schema:Organization
    191 grid-institutes:grid.264270.5 schema:alternateName Department of Mathematics, State University of New York at New Paltz, New York, NY, USA
    192 schema:name Department of Mathematics, State University of New York at New Paltz, New York, NY, USA
    193 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...