Range Shifts Under Constant-Speed and Accelerated Climate Warming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-17

AUTHORS

Ying Zhou

ABSTRACT

Many species are experiencing range shifts as the climate warms. Earlier models have considered moving-habitat scenarios where the shift speed of the moving habitat is either constant or fluctuates around a constant speed. This paper considers scenarios where the shifting speed may either be constant or accelerated. In addition to population persistence, the paper also analyzes the range-shift deficit, which is a lag in the spatial distribution of the population. Another highlight of the results is an analytic formula for a population persistence metric in a particular example, which adds to existing analytic formulas about this persistence metric in the literature. More... »

PAGES

1

References to SciGraph publications

  • 2018-01-13. Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2019-05-10. Inside dynamics for stage-structured integrodifference equations in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2019-10-09. Spreading Speeds for Reaction–Diffusion Equations with a Shifting Habitat in JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS
  • 2018-01-25. Spatial Dynamics of a Nonlocal Dispersal Population Model in a Shifting Environment in JOURNAL OF NONLINEAR SCIENCE
  • 2017-01-18. A discrete-time model for population persistence in habitats with time-varying sizes in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2016-07-14. Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2004-09. Climate and competition: The effect of moving range boundaries on habitat invasibility in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2010-02-02. Discrete-time growth-dispersal models with shifting species ranges in THEORETICAL ECOLOGY
  • 2018-05-08. Individual behavior at habitat edges may help populations persist in moving habitats in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2012-05-06. Extinction debt of high-mountain plants under twenty-first-century climate change in NATURE CLIMATE CHANGE
  • 2020-01-14. Inside Dynamics of Integrodifference Equations with Mutations in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2011-10-19. Changes in plant community composition lag behind climate warming in lowland forests in NATURE
  • 2016-09-19. Climate Change and Integrodifference Equations in a Stochastic Environment in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2008-12-09. Can a Species Keep Pace with a Shifting Climate? in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2013-01-03. Life on the Move: Modeling the Effects of Climate-Driven Range Shifts with Integrodifference Equations in DISPERSAL, INDIVIDUAL MOVEMENT AND SPATIAL ECOLOGY
  • 2020-11-05. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities in NATURE COMMUNICATIONS
  • 2012-01-10. Differences in the climatic debts of birds and butterflies at a continental scale in NATURE CLIMATE CHANGE
  • 2020-01-31. Should I Stay or Should I Go: Partially Sedentary Populations Can Outperform Fully Dispersing Populations in Response to Climate-Induced Range Shifts in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2014-03-14. Integrodifference models for persistence in temporally varying river environments in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2003. Dynamical Systems in Population Biology in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11538-021-00963-8

    DOI

    http://dx.doi.org/10.1007/s11538-021-00963-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142633041

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34787723


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Lafayette College, Easton, USA", 
              "id": "http://www.grid.ac/institutes/grid.258879.9", 
              "name": [
                "Department of Mathematics, Lafayette College, Easton, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Ying", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11538-019-00683-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124051478", 
              "https://doi.org/10.1007/s11538-019-00683-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-016-0180-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024761190", 
              "https://doi.org/10.1007/s11538-016-0180-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.bulm.2003.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041360644", 
              "https://doi.org/10.1016/j.bulm.2003.10.010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21761-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046026605", 
              "https://doi.org/10.1007/978-0-387-21761-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044460824", 
              "https://doi.org/10.1038/nclimate1347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048952219", 
              "https://doi.org/10.1038/nclimate1514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-008-9367-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049828786", 
              "https://doi.org/10.1007/s11538-008-9367-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-35497-7_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030659857", 
              "https://doi.org/10.1007/978-3-642-35497-7_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10884-019-09796-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121613262", 
              "https://doi.org/10.1007/s10884-019-09796-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-016-0203-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027884634", 
              "https://doi.org/10.1007/s11538-016-0203-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050012751", 
              "https://doi.org/10.1038/nature10548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-018-1244-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103859255", 
              "https://doi.org/10.1007/s00285-018-1244-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-020-00700-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124482929", 
              "https://doi.org/10.1007/s11538-020-00700-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12080-010-0071-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034464053", 
              "https://doi.org/10.1007/s12080-010-0071-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00332-018-9445-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100621476", 
              "https://doi.org/10.1007/s00332-018-9445-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-014-0774-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008181652", 
              "https://doi.org/10.1007/s00285-014-0774-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-017-1095-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041872747", 
              "https://doi.org/10.1007/s00285-017-1095-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-19410-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132318709", 
              "https://doi.org/10.1038/s41467-020-19410-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-019-01378-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114051263", 
              "https://doi.org/10.1007/s00285-019-01378-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-018-1206-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100394568", 
              "https://doi.org/10.1007/s00285-018-1206-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-17", 
        "datePublishedReg": "2021-11-17", 
        "description": "Many species are experiencing range shifts as the climate warms. Earlier models have considered moving-habitat scenarios where the shift speed of the moving habitat is either constant or fluctuates around a constant speed. This paper considers scenarios where the shifting speed may either be constant or accelerated. In addition to population persistence, the paper also analyzes the range-shift deficit, which is a lag in the spatial distribution of the population. Another highlight of the results is an analytic formula for a population persistence metric in a particular example, which adds to existing analytic formulas about this persistence metric in the literature.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11538-021-00963-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "84"
          }
        ], 
        "keywords": [
          "range shifts", 
          "persistence metric", 
          "population persistence", 
          "climate warming", 
          "spatial distribution", 
          "shift speed", 
          "habitats", 
          "warming", 
          "climate", 
          "species", 
          "scenarios", 
          "persistence", 
          "metrics", 
          "shift", 
          "population", 
          "distribution", 
          "earlier models", 
          "lag", 
          "highlights", 
          "results", 
          "addition", 
          "model", 
          "example", 
          "deficits", 
          "literature", 
          "paper", 
          "speed", 
          "particular example", 
          "analytic formula", 
          "constant speed", 
          "formula", 
          "moving-habitat scenarios", 
          "range-shift deficit", 
          "population persistence metric", 
          "Accelerated Climate Warming"
        ], 
        "name": "Range Shifts Under Constant-Speed and Accelerated Climate Warming", 
        "pagination": "1", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142633041"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11538-021-00963-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34787723"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11538-021-00963-8", 
          "https://app.dimensions.ai/details/publication/pub.1142633041"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_890.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11538-021-00963-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00963-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00963-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00963-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00963-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      81 URIs      53 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11538-021-00963-8 schema:about anzsrc-for:01
    2 anzsrc-for:06
    3 schema:author N132240c8d65542ffbb52d7b1fb12f9c9
    4 schema:citation sg:pub.10.1007/978-0-387-21761-1
    5 sg:pub.10.1007/978-3-642-35497-7_9
    6 sg:pub.10.1007/s00285-014-0774-y
    7 sg:pub.10.1007/s00285-017-1095-8
    8 sg:pub.10.1007/s00285-018-1206-1
    9 sg:pub.10.1007/s00285-018-1244-8
    10 sg:pub.10.1007/s00285-019-01378-9
    11 sg:pub.10.1007/s00332-018-9445-2
    12 sg:pub.10.1007/s10884-019-09796-5
    13 sg:pub.10.1007/s11538-008-9367-5
    14 sg:pub.10.1007/s11538-016-0180-2
    15 sg:pub.10.1007/s11538-016-0203-z
    16 sg:pub.10.1007/s11538-019-00683-0
    17 sg:pub.10.1007/s11538-020-00700-7
    18 sg:pub.10.1007/s12080-010-0071-3
    19 sg:pub.10.1016/j.bulm.2003.10.010
    20 sg:pub.10.1038/nature10548
    21 sg:pub.10.1038/nclimate1347
    22 sg:pub.10.1038/nclimate1514
    23 sg:pub.10.1038/s41467-020-19410-8
    24 schema:datePublished 2021-11-17
    25 schema:datePublishedReg 2021-11-17
    26 schema:description Many species are experiencing range shifts as the climate warms. Earlier models have considered moving-habitat scenarios where the shift speed of the moving habitat is either constant or fluctuates around a constant speed. This paper considers scenarios where the shifting speed may either be constant or accelerated. In addition to population persistence, the paper also analyzes the range-shift deficit, which is a lag in the spatial distribution of the population. Another highlight of the results is an analytic formula for a population persistence metric in a particular example, which adds to existing analytic formulas about this persistence metric in the literature.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N2c873692255d41d5bf5d627c32f6e912
    31 Na3274f53c82e4e7f8e4ada9964ab2469
    32 sg:journal.1018370
    33 schema:keywords Accelerated Climate Warming
    34 addition
    35 analytic formula
    36 climate
    37 climate warming
    38 constant speed
    39 deficits
    40 distribution
    41 earlier models
    42 example
    43 formula
    44 habitats
    45 highlights
    46 lag
    47 literature
    48 metrics
    49 model
    50 moving-habitat scenarios
    51 paper
    52 particular example
    53 persistence
    54 persistence metric
    55 population
    56 population persistence
    57 population persistence metric
    58 range shifts
    59 range-shift deficit
    60 results
    61 scenarios
    62 shift
    63 shift speed
    64 spatial distribution
    65 species
    66 speed
    67 warming
    68 schema:name Range Shifts Under Constant-Speed and Accelerated Climate Warming
    69 schema:pagination 1
    70 schema:productId N303b9fcc84184fc6b71371ac52342ce6
    71 N8c3df1657f154708a49e325656ac633c
    72 Ncf002c8cd2424a76a94d6c9e72557083
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142633041
    74 https://doi.org/10.1007/s11538-021-00963-8
    75 schema:sdDatePublished 2022-01-01T18:58
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Nc79cba7eb13142538c1e5c21880c6f54
    78 schema:url https://doi.org/10.1007/s11538-021-00963-8
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N132240c8d65542ffbb52d7b1fb12f9c9 rdf:first N949deb7d6dd849348a91328186c2b716
    83 rdf:rest rdf:nil
    84 N2c873692255d41d5bf5d627c32f6e912 schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N303b9fcc84184fc6b71371ac52342ce6 schema:name dimensions_id
    87 schema:value pub.1142633041
    88 rdf:type schema:PropertyValue
    89 N8c3df1657f154708a49e325656ac633c schema:name doi
    90 schema:value 10.1007/s11538-021-00963-8
    91 rdf:type schema:PropertyValue
    92 N949deb7d6dd849348a91328186c2b716 schema:affiliation grid-institutes:grid.258879.9
    93 schema:familyName Zhou
    94 schema:givenName Ying
    95 rdf:type schema:Person
    96 Na3274f53c82e4e7f8e4ada9964ab2469 schema:volumeNumber 84
    97 rdf:type schema:PublicationVolume
    98 Nc79cba7eb13142538c1e5c21880c6f54 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 Ncf002c8cd2424a76a94d6c9e72557083 schema:name pubmed_id
    101 schema:value 34787723
    102 rdf:type schema:PropertyValue
    103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Mathematical Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Biological Sciences
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1018370 schema:issn 0092-8240
    110 1522-9602
    111 schema:name Bulletin of Mathematical Biology
    112 schema:publisher Springer Nature
    113 rdf:type schema:Periodical
    114 sg:pub.10.1007/978-0-387-21761-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026605
    115 https://doi.org/10.1007/978-0-387-21761-1
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-642-35497-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030659857
    118 https://doi.org/10.1007/978-3-642-35497-7_9
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00285-014-0774-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008181652
    121 https://doi.org/10.1007/s00285-014-0774-y
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00285-017-1095-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041872747
    124 https://doi.org/10.1007/s00285-017-1095-8
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s00285-018-1206-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100394568
    127 https://doi.org/10.1007/s00285-018-1206-1
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s00285-018-1244-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103859255
    130 https://doi.org/10.1007/s00285-018-1244-8
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s00285-019-01378-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114051263
    133 https://doi.org/10.1007/s00285-019-01378-9
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s00332-018-9445-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100621476
    136 https://doi.org/10.1007/s00332-018-9445-2
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s10884-019-09796-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121613262
    139 https://doi.org/10.1007/s10884-019-09796-5
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s11538-008-9367-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049828786
    142 https://doi.org/10.1007/s11538-008-9367-5
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s11538-016-0180-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024761190
    145 https://doi.org/10.1007/s11538-016-0180-2
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s11538-016-0203-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027884634
    148 https://doi.org/10.1007/s11538-016-0203-z
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s11538-019-00683-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124051478
    151 https://doi.org/10.1007/s11538-019-00683-0
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11538-020-00700-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124482929
    154 https://doi.org/10.1007/s11538-020-00700-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s12080-010-0071-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034464053
    157 https://doi.org/10.1007/s12080-010-0071-3
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1016/j.bulm.2003.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041360644
    160 https://doi.org/10.1016/j.bulm.2003.10.010
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nature10548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050012751
    163 https://doi.org/10.1038/nature10548
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nclimate1347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044460824
    166 https://doi.org/10.1038/nclimate1347
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nclimate1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048952219
    169 https://doi.org/10.1038/nclimate1514
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/s41467-020-19410-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132318709
    172 https://doi.org/10.1038/s41467-020-19410-8
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.258879.9 schema:alternateName Department of Mathematics, Lafayette College, Easton, USA
    175 schema:name Department of Mathematics, Lafayette College, Easton, USA
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...