The Hard Lessons and Shifting Modeling Trends of COVID-19 Dynamics: Multiresolution Modeling Approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-19

AUTHORS

Olcay Akman, Sudipa Chauhan, Aditi Ghosh, Sara Liesman, Edwin Michael, Anuj Mubayi, Rebecca Perlin, Padmanabhan Seshaiyer, Jai Prakash Tripathi

ABSTRACT

The COVID-19 pandemic has placed epidemiologists, modelers, and policy makers at the forefront of the global discussion of how to control the spread of coronavirus. The main challenges confronting modelling approaches include real-time projections of changes in the numbers of cases, hospitalizations, and fatalities, the consequences of public health policy, the understanding of how best to implement varied non-pharmaceutical interventions and potential vaccination strategies, now that vaccines are available for distribution. Here, we: (i) review carefully selected literature on COVID-19 modeling to identify challenges associated with developing appropriate models along with collecting the fine-tuned data, (ii) use the identified challenges to suggest prospective modeling frameworks through which adaptive interventions such as vaccine strategies and the uses of diagnostic tests can be evaluated, and (iii) provide a novel Multiresolution Modeling Framework which constructs a multi-objective optimization problem by considering relevant stakeholders' participatory perspective to carry out epidemic nowcasting and future prediction. Consolidating our understanding of model approaches to COVID-19 will assist policy makers in designing interventions that are not only maximally effective but also economically beneficial. More... »

PAGES

3

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00959-4

DOI

http://dx.doi.org/10.1007/s11538-021-00959-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142692631

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34797415


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pandemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA", 
          "id": "http://www.grid.ac/institutes/grid.257310.2", 
          "name": [
            "Intercollegiate Biomathematics Alliance, Normal, IL USA", 
            "Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akman", 
        "givenName": "Olcay", 
        "id": "sg:person.0733140772.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733140772.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh India", 
          "id": "http://www.grid.ac/institutes/grid.444644.2", 
          "name": [
            "Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chauhan", 
        "givenName": "Sudipa", 
        "id": "sg:person.014673474063.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014673474063.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Texas A&M University, Commerce, TX USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Intercollegiate Biomathematics Alliance, Normal, IL USA", 
            "Department of Mathematics, Texas A&M University, Commerce, TX USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Aditi", 
        "id": "sg:person.015520664421.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520664421.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA", 
          "id": "http://www.grid.ac/institutes/grid.257310.2", 
          "name": [
            "Intercollegiate Biomathematics Alliance, Normal, IL USA", 
            "Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liesman", 
        "givenName": "Sara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Public Health, University of South Florida, Tampa, FL USA", 
          "id": "http://www.grid.ac/institutes/grid.170693.a", 
          "name": [
            "College of Public Health, University of South Florida, Tampa, FL USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michael", 
        "givenName": "Edwin", 
        "id": "sg:person.01142244712.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142244712.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Public Health Company, Goleta, CA USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Intercollegiate Biomathematics Alliance, Normal, IL USA", 
            "Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA", 
            "Advanced Modeling Group, PRECISIONheor, Los Angeles, CA USA", 
            "Department of Mathematics and Computer Science, Sri Satya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh India", 
            "The Public Health Company, Goleta, CA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mubayi", 
        "givenName": "Anuj", 
        "id": "sg:person.01335573565.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335573565.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intercollegiate Biomathematics Alliance, Normal, IL USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Intercollegiate Biomathematics Alliance, Normal, IL USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perlin", 
        "givenName": "Rebecca", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, College of Science, George Mason University, Fairfax, VA USA", 
          "id": "http://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "Department of Mathematical Sciences, College of Science, George Mason University, Fairfax, VA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seshaiyer", 
        "givenName": "Padmanabhan", 
        "id": "sg:person.0651344355.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651344355.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Central University of Rajasthan, Ajmer, Rajasthan India", 
          "id": "http://www.grid.ac/institutes/grid.462331.1", 
          "name": [
            "Department of Mathematics, Central University of Rajasthan, Ajmer, Rajasthan India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tripathi", 
        "givenName": "Jai Prakash", 
        "id": "sg:person.015736251627.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736251627.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/d41586-020-02801-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131438405", 
          "https://doi.org/10.1038/d41586-020-02801-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2923-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132455279", 
          "https://doi.org/10.1038/s41586-020-2923-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-016-1000-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028425268", 
          "https://doi.org/10.1007/s00285-016-1000-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018658919", 
          "https://doi.org/10.1007/bf00275810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-020-05929-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130687750", 
          "https://doi.org/10.1007/s11071-020-05929-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41577-020-00471-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132252600", 
          "https://doi.org/10.1038/s41577-020-00471-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12916-020-01556-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125738773", 
          "https://doi.org/10.1186/s12916-020-01556-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-020-18450-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130896309", 
          "https://doi.org/10.1038/s41467-020-18450-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-021-83166-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135333678", 
          "https://doi.org/10.1038/s41598-021-83166-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41591-021-01278-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136404775", 
          "https://doi.org/10.1038/s41591-021-01278-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-017-0438-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084040216", 
          "https://doi.org/10.1007/s40314-017-0438-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-015-0873-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051101899", 
          "https://doi.org/10.1007/s00285-015-0873-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12916-019-1443-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123789526", 
          "https://doi.org/10.1186/s12916-019-1443-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-19", 
    "datePublishedReg": "2021-11-19", 
    "description": "The COVID-19 pandemic has placed epidemiologists, modelers, and policy makers at the forefront of the global discussion of how to control the spread of coronavirus. The main challenges confronting modelling approaches include real-time projections of changes in the numbers of cases, hospitalizations, and fatalities, the consequences of public health policy, the understanding of how best to implement varied non-pharmaceutical interventions and potential vaccination strategies, now that vaccines are available for distribution. Here, we: (i) review carefully selected literature on COVID-19 modeling to identify challenges associated with developing appropriate models along with collecting the fine-tuned data, (ii) use the identified challenges to suggest prospective modeling frameworks through which adaptive interventions such as vaccine strategies and the uses of diagnostic tests can be evaluated, and (iii) provide a novel Multiresolution Modeling Framework which constructs a multi-objective optimization problem by considering relevant stakeholders' participatory perspective to carry out epidemic nowcasting and future prediction. Consolidating our understanding of model approaches to COVID-19 will assist policy makers in designing interventions that are not only maximally effective but also economically beneficial.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00959-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "potential vaccination strategies", 
      "public health policy", 
      "non-pharmaceutical interventions", 
      "vaccine strategies", 
      "vaccination strategies", 
      "number of cases", 
      "diagnostic tests", 
      "health policy", 
      "COVID-19 pandemic", 
      "COVID-19", 
      "intervention", 
      "COVID-19 modeling", 
      "COVID-19 dynamics", 
      "hospitalization", 
      "adaptive interventions", 
      "vaccine", 
      "spread of coronavirus", 
      "coronavirus", 
      "epidemiologists", 
      "pandemic", 
      "fatalities", 
      "policy makers", 
      "real-time projection", 
      "strategies", 
      "cases", 
      "spread", 
      "challenges", 
      "test", 
      "changes", 
      "understanding", 
      "appropriate model", 
      "literature", 
      "data", 
      "consequences", 
      "number", 
      "projections", 
      "approach", 
      "trends", 
      "uses", 
      "forefront", 
      "makers", 
      "hard lessons", 
      "lessons", 
      "discussion", 
      "model", 
      "perspective", 
      "distribution", 
      "policy", 
      "problem", 
      "main challenges", 
      "prediction", 
      "model approach", 
      "global discussion", 
      "future predictions", 
      "modeling approach", 
      "modelling approach", 
      "participatory perspective", 
      "modeling trends", 
      "modeling", 
      "framework", 
      "dynamics", 
      "modeling framework", 
      "modelers", 
      "nowcasting", 
      "multi-objective optimization problem", 
      "optimization problem", 
      "varied non-pharmaceutical interventions", 
      "prospective modeling frameworks", 
      "novel Multiresolution Modeling Framework", 
      "Multiresolution Modeling Framework", 
      "relevant stakeholders' participatory perspective", 
      "stakeholders' participatory perspective", 
      "epidemic nowcasting", 
      "Multiresolution Modeling Approach"
    ], 
    "name": "The Hard Lessons and Shifting Modeling Trends of COVID-19 Dynamics: Multiresolution Modeling Approach", 
    "pagination": "3", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142692631"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00959-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34797415"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00959-4", 
      "https://app.dimensions.ai/details/publication/pub.1142692631"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_917.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00959-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00959-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00959-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00959-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00959-4'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      22 PREDICATES      119 URIs      98 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00959-4 schema:about N451cd03cd81645bfba79d4c757c0f56e
2 Na6f6110ad9994d0f9a23fc47f4861b66
3 Ne70a4f6be2f74f57b7aacd904dd516ef
4 Nf34271e9b38541eca6ef2ec7e762dd49
5 Nf4689eef09194c1fa2cb966d6c6cdffe
6 Nfb4812520fa045a18cf429a31e8b688b
7 anzsrc-for:01
8 anzsrc-for:06
9 schema:author Nedc7cd4bc49e48d5acfdfc4371896ba1
10 schema:citation sg:pub.10.1007/bf00275810
11 sg:pub.10.1007/s00285-015-0873-4
12 sg:pub.10.1007/s00285-016-1000-x
13 sg:pub.10.1007/s11071-020-05929-4
14 sg:pub.10.1007/s40314-017-0438-9
15 sg:pub.10.1038/d41586-020-02801-8
16 sg:pub.10.1038/s41467-020-18450-4
17 sg:pub.10.1038/s41577-020-00471-1
18 sg:pub.10.1038/s41586-020-2923-3
19 sg:pub.10.1038/s41591-021-01278-w
20 sg:pub.10.1038/s41598-021-83166-4
21 sg:pub.10.1186/s12916-019-1443-1
22 sg:pub.10.1186/s12916-020-01556-3
23 schema:datePublished 2021-11-19
24 schema:datePublishedReg 2021-11-19
25 schema:description The COVID-19 pandemic has placed epidemiologists, modelers, and policy makers at the forefront of the global discussion of how to control the spread of coronavirus. The main challenges confronting modelling approaches include real-time projections of changes in the numbers of cases, hospitalizations, and fatalities, the consequences of public health policy, the understanding of how best to implement varied non-pharmaceutical interventions and potential vaccination strategies, now that vaccines are available for distribution. Here, we: (i) review carefully selected literature on COVID-19 modeling to identify challenges associated with developing appropriate models along with collecting the fine-tuned data, (ii) use the identified challenges to suggest prospective modeling frameworks through which adaptive interventions such as vaccine strategies and the uses of diagnostic tests can be evaluated, and (iii) provide a novel Multiresolution Modeling Framework which constructs a multi-objective optimization problem by considering relevant stakeholders' participatory perspective to carry out epidemic nowcasting and future prediction. Consolidating our understanding of model approaches to COVID-19 will assist policy makers in designing interventions that are not only maximally effective but also economically beneficial.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N1cea10ef6b684c83968edab43c13e8fd
30 N6a2e7b35f63d418798ea7da420abadfc
31 sg:journal.1018370
32 schema:keywords COVID-19
33 COVID-19 dynamics
34 COVID-19 modeling
35 COVID-19 pandemic
36 Multiresolution Modeling Approach
37 Multiresolution Modeling Framework
38 adaptive interventions
39 approach
40 appropriate model
41 cases
42 challenges
43 changes
44 consequences
45 coronavirus
46 data
47 diagnostic tests
48 discussion
49 distribution
50 dynamics
51 epidemic nowcasting
52 epidemiologists
53 fatalities
54 forefront
55 framework
56 future predictions
57 global discussion
58 hard lessons
59 health policy
60 hospitalization
61 intervention
62 lessons
63 literature
64 main challenges
65 makers
66 model
67 model approach
68 modelers
69 modeling
70 modeling approach
71 modeling framework
72 modeling trends
73 modelling approach
74 multi-objective optimization problem
75 non-pharmaceutical interventions
76 novel Multiresolution Modeling Framework
77 nowcasting
78 number
79 number of cases
80 optimization problem
81 pandemic
82 participatory perspective
83 perspective
84 policy
85 policy makers
86 potential vaccination strategies
87 prediction
88 problem
89 projections
90 prospective modeling frameworks
91 public health policy
92 real-time projection
93 relevant stakeholders' participatory perspective
94 spread
95 spread of coronavirus
96 stakeholders' participatory perspective
97 strategies
98 test
99 trends
100 understanding
101 uses
102 vaccination strategies
103 vaccine
104 vaccine strategies
105 varied non-pharmaceutical interventions
106 schema:name The Hard Lessons and Shifting Modeling Trends of COVID-19 Dynamics: Multiresolution Modeling Approach
107 schema:pagination 3
108 schema:productId N15a2308f7fd44691a401b2cc10079e83
109 Nab670e9fc8864ec6ab6cd416d47725e1
110 Nefcd38f37c8245daa04babb79b7cd140
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142692631
112 https://doi.org/10.1007/s11538-021-00959-4
113 schema:sdDatePublished 2022-01-01T19:03
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Nc572d0c9a17c48208b35b709af3c4490
116 schema:url https://doi.org/10.1007/s11538-021-00959-4
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N15a2308f7fd44691a401b2cc10079e83 schema:name doi
121 schema:value 10.1007/s11538-021-00959-4
122 rdf:type schema:PropertyValue
123 N1cea10ef6b684c83968edab43c13e8fd schema:volumeNumber 84
124 rdf:type schema:PublicationVolume
125 N347af673f16c41f8b0ca125d4884fb68 rdf:first N409c9bc40a084f4ab9483c34e45bb9ab
126 rdf:rest Ndca357b200e94a698eb236f4a2755419
127 N3d2cdbfcf6794e70a3d2a89cf4ac8ed8 schema:affiliation grid-institutes:grid.257310.2
128 schema:familyName Liesman
129 schema:givenName Sara
130 rdf:type schema:Person
131 N409c9bc40a084f4ab9483c34e45bb9ab schema:affiliation grid-institutes:None
132 schema:familyName Perlin
133 schema:givenName Rebecca
134 rdf:type schema:Person
135 N451cd03cd81645bfba79d4c757c0f56e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Prospective Studies
137 rdf:type schema:DefinedTerm
138 N50c1730dc0004c7bb5a0773000689aa1 rdf:first sg:person.015520664421.13
139 rdf:rest Ne84ef54056ef4a729580fe7d917e483d
140 N54ed18e3dace47648867687f6545c30d rdf:first sg:person.01335573565.46
141 rdf:rest N347af673f16c41f8b0ca125d4884fb68
142 N602211ac8cbf4a579a91d77230cb5c20 rdf:first sg:person.014673474063.04
143 rdf:rest N50c1730dc0004c7bb5a0773000689aa1
144 N6a2e7b35f63d418798ea7da420abadfc schema:issueNumber 1
145 rdf:type schema:PublicationIssue
146 N6dca0c680e5e49779d37c789749229eb rdf:first sg:person.015736251627.38
147 rdf:rest rdf:nil
148 Na6f6110ad9994d0f9a23fc47f4861b66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name COVID-19
150 rdf:type schema:DefinedTerm
151 Nab670e9fc8864ec6ab6cd416d47725e1 schema:name pubmed_id
152 schema:value 34797415
153 rdf:type schema:PropertyValue
154 Nb050b0b289c2464da5990b298e340744 rdf:first sg:person.01142244712.55
155 rdf:rest N54ed18e3dace47648867687f6545c30d
156 Nc572d0c9a17c48208b35b709af3c4490 schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 Ndca357b200e94a698eb236f4a2755419 rdf:first sg:person.0651344355.43
159 rdf:rest N6dca0c680e5e49779d37c789749229eb
160 Ne70a4f6be2f74f57b7aacd904dd516ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Pandemics
162 rdf:type schema:DefinedTerm
163 Ne84ef54056ef4a729580fe7d917e483d rdf:first N3d2cdbfcf6794e70a3d2a89cf4ac8ed8
164 rdf:rest Nb050b0b289c2464da5990b298e340744
165 Nedc7cd4bc49e48d5acfdfc4371896ba1 rdf:first sg:person.0733140772.17
166 rdf:rest N602211ac8cbf4a579a91d77230cb5c20
167 Nefcd38f37c8245daa04babb79b7cd140 schema:name dimensions_id
168 schema:value pub.1142692631
169 rdf:type schema:PropertyValue
170 Nf34271e9b38541eca6ef2ec7e762dd49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Humans
172 rdf:type schema:DefinedTerm
173 Nf4689eef09194c1fa2cb966d6c6cdffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Mathematical Concepts
175 rdf:type schema:DefinedTerm
176 Nfb4812520fa045a18cf429a31e8b688b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name SARS-CoV-2
178 rdf:type schema:DefinedTerm
179 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
180 schema:name Mathematical Sciences
181 rdf:type schema:DefinedTerm
182 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
183 schema:name Biological Sciences
184 rdf:type schema:DefinedTerm
185 sg:journal.1018370 schema:issn 0092-8240
186 1522-9602
187 schema:name Bulletin of Mathematical Biology
188 schema:publisher Springer Nature
189 rdf:type schema:Periodical
190 sg:person.01142244712.55 schema:affiliation grid-institutes:grid.170693.a
191 schema:familyName Michael
192 schema:givenName Edwin
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142244712.55
194 rdf:type schema:Person
195 sg:person.01335573565.46 schema:affiliation grid-institutes:None
196 schema:familyName Mubayi
197 schema:givenName Anuj
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335573565.46
199 rdf:type schema:Person
200 sg:person.014673474063.04 schema:affiliation grid-institutes:grid.444644.2
201 schema:familyName Chauhan
202 schema:givenName Sudipa
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014673474063.04
204 rdf:type schema:Person
205 sg:person.015520664421.13 schema:affiliation grid-institutes:grid.264756.4
206 schema:familyName Ghosh
207 schema:givenName Aditi
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520664421.13
209 rdf:type schema:Person
210 sg:person.015736251627.38 schema:affiliation grid-institutes:grid.462331.1
211 schema:familyName Tripathi
212 schema:givenName Jai Prakash
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736251627.38
214 rdf:type schema:Person
215 sg:person.0651344355.43 schema:affiliation grid-institutes:grid.22448.38
216 schema:familyName Seshaiyer
217 schema:givenName Padmanabhan
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651344355.43
219 rdf:type schema:Person
220 sg:person.0733140772.17 schema:affiliation grid-institutes:grid.257310.2
221 schema:familyName Akman
222 schema:givenName Olcay
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733140772.17
224 rdf:type schema:Person
225 sg:pub.10.1007/bf00275810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018658919
226 https://doi.org/10.1007/bf00275810
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00285-015-0873-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051101899
229 https://doi.org/10.1007/s00285-015-0873-4
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s00285-016-1000-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028425268
232 https://doi.org/10.1007/s00285-016-1000-x
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s11071-020-05929-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130687750
235 https://doi.org/10.1007/s11071-020-05929-4
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s40314-017-0438-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084040216
238 https://doi.org/10.1007/s40314-017-0438-9
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/d41586-020-02801-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131438405
241 https://doi.org/10.1038/d41586-020-02801-8
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/s41467-020-18450-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130896309
244 https://doi.org/10.1038/s41467-020-18450-4
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/s41577-020-00471-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132252600
247 https://doi.org/10.1038/s41577-020-00471-1
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/s41586-020-2923-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132455279
250 https://doi.org/10.1038/s41586-020-2923-3
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/s41591-021-01278-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1136404775
253 https://doi.org/10.1038/s41591-021-01278-w
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/s41598-021-83166-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135333678
256 https://doi.org/10.1038/s41598-021-83166-4
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/s12916-019-1443-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123789526
259 https://doi.org/10.1186/s12916-019-1443-1
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/s12916-020-01556-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125738773
262 https://doi.org/10.1186/s12916-020-01556-3
263 rdf:type schema:CreativeWork
264 grid-institutes:None schema:alternateName Intercollegiate Biomathematics Alliance, Normal, IL USA
265 The Public Health Company, Goleta, CA USA
266 schema:name Advanced Modeling Group, PRECISIONheor, Los Angeles, CA USA
267 Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA
268 Department of Mathematics and Computer Science, Sri Satya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh India
269 Intercollegiate Biomathematics Alliance, Normal, IL USA
270 The Public Health Company, Goleta, CA USA
271 rdf:type schema:Organization
272 grid-institutes:grid.170693.a schema:alternateName College of Public Health, University of South Florida, Tampa, FL USA
273 schema:name College of Public Health, University of South Florida, Tampa, FL USA
274 rdf:type schema:Organization
275 grid-institutes:grid.22448.38 schema:alternateName Department of Mathematical Sciences, College of Science, George Mason University, Fairfax, VA USA
276 schema:name Department of Mathematical Sciences, College of Science, George Mason University, Fairfax, VA USA
277 rdf:type schema:Organization
278 grid-institutes:grid.257310.2 schema:alternateName Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA
279 schema:name Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL USA
280 Intercollegiate Biomathematics Alliance, Normal, IL USA
281 rdf:type schema:Organization
282 grid-institutes:grid.264756.4 schema:alternateName Department of Mathematics, Texas A&M University, Commerce, TX USA
283 schema:name Department of Mathematics, Texas A&M University, Commerce, TX USA
284 Intercollegiate Biomathematics Alliance, Normal, IL USA
285 rdf:type schema:Organization
286 grid-institutes:grid.444644.2 schema:alternateName Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh India
287 schema:name Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh India
288 rdf:type schema:Organization
289 grid-institutes:grid.462331.1 schema:alternateName Department of Mathematics, Central University of Rajasthan, Ajmer, Rajasthan India
290 schema:name Department of Mathematics, Central University of Rajasthan, Ajmer, Rajasthan India
291 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...