Control Strategies for a Multi-strain Epidemic Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-27

AUTHORS

Yuan Lou, Rachidi B. Salako

ABSTRACT

This article studies a multi-strain epidemic model with diffusion and environmental heterogeneity. We address the question of a control strategy for multiple strains of the infectious disease by investigating how the local distributions of the transmission and recovery rates affect the dynamics of the disease. Our study covers both full model (in which case the diffusion rates for all subgroups of the population are positive) and the ODE-PDE case (in which case we require a total lock-down of the susceptible subgroup and allow the infected subgroups to have positive diffusion rates). In each case, a basic reproduction number of the epidemic model is defined and it is shown that if this reproduction number is less than one then the disease will be eradicated in the long run. On the other hand, if the reproduction number is greater than one, then the disease will become permanent. Moreover, we show that when the disease is permanent, creating a common safety area against all strains and lowering the diffusion rate of the susceptible subgroup will result in reducing the number of infected populations. Numerical simulations are presented to support our theoretical findings. More... »

PAGES

10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6

DOI

http://dx.doi.org/10.1007/s11538-021-00957-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143322753

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34837547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Ohio State University, Columbus, OH 43210 USA", 
          "id": "http://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University, Shanghai, 200240 People\u2019s Republic of China", 
            "Department of Mathematics, Ohio State University, Columbus, OH 43210 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lou", 
        "givenName": "Yuan", 
        "id": "sg:person.0635305470.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635305470.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154 USA", 
          "id": "http://www.grid.ac/institutes/grid.272362.0", 
          "name": [
            "Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salako", 
        "givenName": "Rachidi B.", 
        "id": "sg:person.010531263561.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531263561.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00285-003-0207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009133066", 
          "https://doi.org/10.1007/s00285-003-0207-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0089647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101449", 
          "https://doi.org/10.1007/bfb0089647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031246219", 
          "https://doi.org/10.1007/bf00276102"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-27", 
    "datePublishedReg": "2021-11-27", 
    "description": "This article studies a multi-strain epidemic model with diffusion and environmental heterogeneity. We address the question of a control strategy for multiple strains of the infectious disease by investigating how the local distributions of the transmission and recovery rates affect the dynamics of the disease. Our study covers both full model (in which case the diffusion rates for all subgroups of the population are positive) and the ODE-PDE case (in which case we require a total lock-down of the susceptible subgroup and allow the infected subgroups to have positive diffusion rates). In each case, a basic reproduction number of the epidemic model is defined and it is shown that if this reproduction number is less than one then the disease will be eradicated in the long run. On the other hand, if the reproduction number is greater than one, then the disease will become permanent. Moreover, we show that when the disease is permanent, creating a common safety area against all strains and lowering the diffusion rate of the susceptible subgroup will result in reducing the number of infected populations. Numerical simulations are presented to support our theoretical findings.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00957-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7923283", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "multi-strain epidemic models", 
      "reproduction number", 
      "susceptible subgroups", 
      "infectious diseases", 
      "disease", 
      "infected population", 
      "basic reproduction number", 
      "multiple strains", 
      "epidemic model", 
      "recovery rate", 
      "subgroups", 
      "cases", 
      "rate", 
      "strains", 
      "population", 
      "findings", 
      "number", 
      "strategies", 
      "study", 
      "full model", 
      "heterogeneity", 
      "transmission", 
      "safety area", 
      "model", 
      "hand", 
      "area", 
      "questions", 
      "article", 
      "control strategy", 
      "distribution", 
      "long run", 
      "local distribution", 
      "run", 
      "diffusion", 
      "dynamics", 
      "diffusion rate", 
      "simulations", 
      "theoretical findings", 
      "environmental heterogeneity", 
      "numerical simulations", 
      "ODE-PDE case", 
      "common safety area"
    ], 
    "name": "Control Strategies for a Multi-strain Epidemic Model", 
    "pagination": "10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143322753"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00957-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34837547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00957-6", 
      "https://app.dimensions.ai/details/publication/pub.1143322753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_917.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00957-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      70 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00957-6 schema:about anzsrc-for:01
2 anzsrc-for:06
3 schema:author N06db707e94fa49d08cfe8415a4720350
4 schema:citation sg:pub.10.1007/bf00276102
5 sg:pub.10.1007/bfb0089647
6 sg:pub.10.1007/s00285-003-0207-9
7 schema:datePublished 2021-11-27
8 schema:datePublishedReg 2021-11-27
9 schema:description This article studies a multi-strain epidemic model with diffusion and environmental heterogeneity. We address the question of a control strategy for multiple strains of the infectious disease by investigating how the local distributions of the transmission and recovery rates affect the dynamics of the disease. Our study covers both full model (in which case the diffusion rates for all subgroups of the population are positive) and the ODE-PDE case (in which case we require a total lock-down of the susceptible subgroup and allow the infected subgroups to have positive diffusion rates). In each case, a basic reproduction number of the epidemic model is defined and it is shown that if this reproduction number is less than one then the disease will be eradicated in the long run. On the other hand, if the reproduction number is greater than one, then the disease will become permanent. Moreover, we show that when the disease is permanent, creating a common safety area against all strains and lowering the diffusion rate of the susceptible subgroup will result in reducing the number of infected populations. Numerical simulations are presented to support our theoretical findings.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N5172ef33f7024b9687af96fb047e54d5
14 Nc97a0a2f7bd8400788a3ea24102628e2
15 sg:journal.1018370
16 schema:keywords ODE-PDE case
17 area
18 article
19 basic reproduction number
20 cases
21 common safety area
22 control strategy
23 diffusion
24 diffusion rate
25 disease
26 distribution
27 dynamics
28 environmental heterogeneity
29 epidemic model
30 findings
31 full model
32 hand
33 heterogeneity
34 infected population
35 infectious diseases
36 local distribution
37 long run
38 model
39 multi-strain epidemic models
40 multiple strains
41 number
42 numerical simulations
43 population
44 questions
45 rate
46 recovery rate
47 reproduction number
48 run
49 safety area
50 simulations
51 strains
52 strategies
53 study
54 subgroups
55 susceptible subgroups
56 theoretical findings
57 transmission
58 schema:name Control Strategies for a Multi-strain Epidemic Model
59 schema:pagination 10
60 schema:productId N235e87e8e7404d03992f3fb7b42c2e56
61 N7e2fec1d33f9476db7e63f6f8901db7a
62 Nf7c1b408d4ec483e9e3b176e40a71340
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143322753
64 https://doi.org/10.1007/s11538-021-00957-6
65 schema:sdDatePublished 2022-01-01T19:03
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N9671bcc688e54a6282c4bde50fdb1558
68 schema:url https://doi.org/10.1007/s11538-021-00957-6
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N06db707e94fa49d08cfe8415a4720350 rdf:first sg:person.0635305470.83
73 rdf:rest N10b597eb495f4308bee13648ca275130
74 N10b597eb495f4308bee13648ca275130 rdf:first sg:person.010531263561.77
75 rdf:rest rdf:nil
76 N235e87e8e7404d03992f3fb7b42c2e56 schema:name dimensions_id
77 schema:value pub.1143322753
78 rdf:type schema:PropertyValue
79 N5172ef33f7024b9687af96fb047e54d5 schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N7e2fec1d33f9476db7e63f6f8901db7a schema:name pubmed_id
82 schema:value 34837547
83 rdf:type schema:PropertyValue
84 N9671bcc688e54a6282c4bde50fdb1558 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nc97a0a2f7bd8400788a3ea24102628e2 schema:volumeNumber 84
87 rdf:type schema:PublicationVolume
88 Nf7c1b408d4ec483e9e3b176e40a71340 schema:name doi
89 schema:value 10.1007/s11538-021-00957-6
90 rdf:type schema:PropertyValue
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biological Sciences
96 rdf:type schema:DefinedTerm
97 sg:grant.7923283 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00957-6
98 rdf:type schema:MonetaryGrant
99 sg:journal.1018370 schema:issn 0092-8240
100 1522-9602
101 schema:name Bulletin of Mathematical Biology
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.010531263561.77 schema:affiliation grid-institutes:grid.272362.0
105 schema:familyName Salako
106 schema:givenName Rachidi B.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531263561.77
108 rdf:type schema:Person
109 sg:person.0635305470.83 schema:affiliation grid-institutes:grid.261331.4
110 schema:familyName Lou
111 schema:givenName Yuan
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635305470.83
113 rdf:type schema:Person
114 sg:pub.10.1007/bf00276102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031246219
115 https://doi.org/10.1007/bf00276102
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bfb0089647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021101449
118 https://doi.org/10.1007/bfb0089647
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00285-003-0207-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009133066
121 https://doi.org/10.1007/s00285-003-0207-9
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.261331.4 schema:alternateName Department of Mathematics, Ohio State University, Columbus, OH 43210 USA
124 schema:name Department of Mathematics, Ohio State University, Columbus, OH 43210 USA
125 School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
126 rdf:type schema:Organization
127 grid-institutes:grid.272362.0 schema:alternateName Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154 USA
128 schema:name Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154 USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...