Control Strategies for a Multi-strain Epidemic Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-27

AUTHORS

Yuan Lou, Rachidi B. Salako

ABSTRACT

This article studies a multi-strain epidemic model with diffusion and environmental heterogeneity. We address the question of a control strategy for multiple strains of the infectious disease by investigating how the local distributions of the transmission and recovery rates affect the dynamics of the disease. Our study covers both full model (in which case the diffusion rates for all subgroups of the population are positive) and the ODE–PDE case (in which case we require a total lock-down of the susceptible subgroup and allow the infected subgroups to have positive diffusion rates). In each case, a basic reproduction number of the epidemic model is defined and it is shown that if this reproduction number is less than one then the disease will be eradicated in the long run. On the other hand, if the reproduction number is greater than one, then the disease will become permanent. Moreover, we show that when the disease is permanent, creating a common safety area against all strains and lowering the diffusion rate of the susceptible subgroup will result in reducing the number of infected populations. Numerical simulations are presented to support our theoretical findings. More... »

PAGES

10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6

DOI

http://dx.doi.org/10.1007/s11538-021-00957-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143322753

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34837547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basic Reproduction Number", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Communicable Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Ohio State University, 43210, Columbus, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University, 200240, Shanghai, People\u2019s Republic of China", 
            "Department of Mathematics, Ohio State University, 43210, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lou", 
        "givenName": "Yuan", 
        "id": "sg:person.0635305470.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635305470.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, University of Nevada, Las Vegas, 89154, Las Vegas, NV, USA", 
          "id": "http://www.grid.ac/institutes/grid.272362.0", 
          "name": [
            "Department of Mathematical Sciences, University of Nevada, Las Vegas, 89154, Las Vegas, NV, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salako", 
        "givenName": "Rachidi B.", 
        "id": "sg:person.010531263561.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531263561.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00276102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031246219", 
          "https://doi.org/10.1007/bf00276102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-003-0207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009133066", 
          "https://doi.org/10.1007/s00285-003-0207-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0089647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101449", 
          "https://doi.org/10.1007/bfb0089647"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-27", 
    "datePublishedReg": "2021-11-27", 
    "description": "This article studies a multi-strain epidemic model with diffusion and environmental heterogeneity. We address the question of a control strategy for multiple strains of the infectious disease by investigating how the local distributions of the transmission and recovery rates affect the dynamics of the disease. Our study covers both full model (in which case the diffusion rates for all subgroups of the population are positive) and the ODE\u2013PDE case (in which case we require a total lock-down of the susceptible subgroup and allow the infected subgroups to have positive diffusion rates). In each case, a basic reproduction number of the epidemic model is defined and it is shown that if this reproduction number is less than one then the disease will be eradicated in the long run. On the other hand, if the reproduction number is greater than one, then the disease will become permanent. Moreover, we show that when the disease is permanent, creating a common safety area against all strains and lowering the diffusion rate of the susceptible subgroup will result in reducing the number of infected populations. Numerical simulations are presented to support our theoretical findings.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00957-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7923283", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "multi-strain epidemic models", 
      "reproduction number", 
      "susceptible subgroups", 
      "infectious diseases", 
      "disease", 
      "infected population", 
      "basic reproduction number", 
      "multiple strains", 
      "epidemic model", 
      "recovery rate", 
      "subgroups", 
      "cases", 
      "rate", 
      "strains", 
      "population", 
      "findings", 
      "number", 
      "strategies", 
      "study", 
      "full model", 
      "heterogeneity", 
      "transmission", 
      "safety area", 
      "model", 
      "hand", 
      "area", 
      "questions", 
      "article", 
      "control strategy", 
      "distribution", 
      "local distribution", 
      "long run", 
      "run", 
      "diffusion", 
      "dynamics", 
      "diffusion rate", 
      "simulations", 
      "theoretical findings", 
      "environmental heterogeneity", 
      "numerical simulations"
    ], 
    "name": "Control Strategies for a Multi-strain Epidemic Model", 
    "pagination": "10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143322753"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00957-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34837547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00957-6", 
      "https://app.dimensions.ai/details/publication/pub.1143322753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_879.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00957-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00957-6'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      22 PREDICATES      74 URIs      63 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00957-6 schema:about N4e0d9ffdd2aa421996d5322b8a60cf3f
2 N59b85f0a7d4f4c35b53d6a74ab9cb840
3 N82eea48b53504617bbe4327e9b86b572
4 Nb5f7b9d8ffda4573a7fb12908021b434
5 Ne33b01c39dbe467f811891332cd90b18
6 Nff8de13d7f714170987d824299616130
7 anzsrc-for:01
8 anzsrc-for:06
9 schema:author Nbdfd889c568f4630a8eeb32e336601aa
10 schema:citation sg:pub.10.1007/bf00276102
11 sg:pub.10.1007/bfb0089647
12 sg:pub.10.1007/s00285-003-0207-9
13 schema:datePublished 2021-11-27
14 schema:datePublishedReg 2021-11-27
15 schema:description This article studies a multi-strain epidemic model with diffusion and environmental heterogeneity. We address the question of a control strategy for multiple strains of the infectious disease by investigating how the local distributions of the transmission and recovery rates affect the dynamics of the disease. Our study covers both full model (in which case the diffusion rates for all subgroups of the population are positive) and the ODE–PDE case (in which case we require a total lock-down of the susceptible subgroup and allow the infected subgroups to have positive diffusion rates). In each case, a basic reproduction number of the epidemic model is defined and it is shown that if this reproduction number is less than one then the disease will be eradicated in the long run. On the other hand, if the reproduction number is greater than one, then the disease will become permanent. Moreover, we show that when the disease is permanent, creating a common safety area against all strains and lowering the diffusion rate of the susceptible subgroup will result in reducing the number of infected populations. Numerical simulations are presented to support our theoretical findings.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N8ca4536c6bea4a5d8757c0599957dc03
20 Nb56437bc002a4a8589af2b3f9b5247d1
21 sg:journal.1018370
22 schema:keywords area
23 article
24 basic reproduction number
25 cases
26 control strategy
27 diffusion
28 diffusion rate
29 disease
30 distribution
31 dynamics
32 environmental heterogeneity
33 epidemic model
34 findings
35 full model
36 hand
37 heterogeneity
38 infected population
39 infectious diseases
40 local distribution
41 long run
42 model
43 multi-strain epidemic models
44 multiple strains
45 number
46 numerical simulations
47 population
48 questions
49 rate
50 recovery rate
51 reproduction number
52 run
53 safety area
54 simulations
55 strains
56 strategies
57 study
58 subgroups
59 susceptible subgroups
60 theoretical findings
61 transmission
62 schema:name Control Strategies for a Multi-strain Epidemic Model
63 schema:pagination 10
64 schema:productId N2bec2f4796e4405f96bd0d9e2250689b
65 N831fea5a8b6a4b6dbcfa521e66cfb81f
66 Nb859831dcad64edb837f41e24eda6693
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143322753
68 https://doi.org/10.1007/s11538-021-00957-6
69 schema:sdDatePublished 2022-05-10T10:31
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N92c13b4a0b7f4a0aadcff7e62d04149f
72 schema:url https://doi.org/10.1007/s11538-021-00957-6
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N2bec2f4796e4405f96bd0d9e2250689b schema:name doi
77 schema:value 10.1007/s11538-021-00957-6
78 rdf:type schema:PropertyValue
79 N4e0d9ffdd2aa421996d5322b8a60cf3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Models, Biological
81 rdf:type schema:DefinedTerm
82 N59b85f0a7d4f4c35b53d6a74ab9cb840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Basic Reproduction Number
84 rdf:type schema:DefinedTerm
85 N82eea48b53504617bbe4327e9b86b572 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Humans
87 rdf:type schema:DefinedTerm
88 N831fea5a8b6a4b6dbcfa521e66cfb81f schema:name dimensions_id
89 schema:value pub.1143322753
90 rdf:type schema:PropertyValue
91 N8ca4536c6bea4a5d8757c0599957dc03 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N92c13b4a0b7f4a0aadcff7e62d04149f schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nb56437bc002a4a8589af2b3f9b5247d1 schema:volumeNumber 84
96 rdf:type schema:PublicationVolume
97 Nb5f7b9d8ffda4573a7fb12908021b434 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Communicable Diseases
99 rdf:type schema:DefinedTerm
100 Nb859831dcad64edb837f41e24eda6693 schema:name pubmed_id
101 schema:value 34837547
102 rdf:type schema:PropertyValue
103 Nbdfd889c568f4630a8eeb32e336601aa rdf:first sg:person.0635305470.83
104 rdf:rest Nf016c181d4024679af85b1283f984987
105 Ne33b01c39dbe467f811891332cd90b18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Epidemics
107 rdf:type schema:DefinedTerm
108 Nf016c181d4024679af85b1283f984987 rdf:first sg:person.010531263561.77
109 rdf:rest rdf:nil
110 Nff8de13d7f714170987d824299616130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Mathematical Concepts
112 rdf:type schema:DefinedTerm
113 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
114 schema:name Mathematical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biological Sciences
118 rdf:type schema:DefinedTerm
119 sg:grant.7923283 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00957-6
120 rdf:type schema:MonetaryGrant
121 sg:journal.1018370 schema:issn 0092-8240
122 1522-9602
123 schema:name Bulletin of Mathematical Biology
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.010531263561.77 schema:affiliation grid-institutes:grid.272362.0
127 schema:familyName Salako
128 schema:givenName Rachidi B.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531263561.77
130 rdf:type schema:Person
131 sg:person.0635305470.83 schema:affiliation grid-institutes:grid.261331.4
132 schema:familyName Lou
133 schema:givenName Yuan
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635305470.83
135 rdf:type schema:Person
136 sg:pub.10.1007/bf00276102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031246219
137 https://doi.org/10.1007/bf00276102
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bfb0089647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021101449
140 https://doi.org/10.1007/bfb0089647
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00285-003-0207-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009133066
143 https://doi.org/10.1007/s00285-003-0207-9
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.261331.4 schema:alternateName Department of Mathematics, Ohio State University, 43210, Columbus, OH, USA
146 schema:name Department of Mathematics, Ohio State University, 43210, Columbus, OH, USA
147 School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University, 200240, Shanghai, People’s Republic of China
148 rdf:type schema:Organization
149 grid-institutes:grid.272362.0 schema:alternateName Department of Mathematical Sciences, University of Nevada, Las Vegas, 89154, Las Vegas, NV, USA
150 schema:name Department of Mathematical Sciences, University of Nevada, Las Vegas, 89154, Las Vegas, NV, USA
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...