Multiscale Modelling of De Novo Anaerobic Granulation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-06

AUTHORS

A. Tenore, F. Russo, M. R. Mattei, B. D’Acunto, G. Collins, L. Frunzo

ABSTRACT

A multiscale mathematical model is presented to describe de novo granulation, and the evolution of multispecies granular biofilms, in a continuously fed bioreactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The equation governing the free boundary is derived from global mass balance considerations and takes into account the growth of sessile biomass as well as exchange fluxes with the bulk liquid. Starting from a vanishing initial value, the expansion of the free boundary is initiated by the attachment process, which depends on the microbial species concentrations within the bulk liquid and their specific attachment velocity. Nonlinear hyperbolic PDEs model the growth of the sessile microbial species, while quasi-linear parabolic PDEs govern the dynamics of substrates and invading species within the granular biofilm. Nonlinear ODEs govern the evolution of soluble substrates and planktonic biomass within the bulk liquid. The model is applied to an anaerobic, granular-based bioreactor system, and solved numerically to test its qualitative behaviour and explore the main aspects of de novo anaerobic granulation: ecology, biomass distribution, relative abundance, dimensional evolution of the granules and soluble substrates, and planktonic biomass dynamics within the bioreactor. The numerical results confirm that the model accurately describes the ecology and the concentrically layered structure of anaerobic granules observed experimentally, and that it can predict the effects on the process of significant factors, such as influent wastewater composition; granulation properties of planktonic biomass; biomass density; detachment intensity; and number of granules. More... »

PAGES

122

References to SciGraph publications

  • 2019-05-29. Free boundary approach for the attachment in the initial phase of multispecies biofilm growth in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • 2001-10. The effects of shear force on the formation, structure and metabolism of aerobic granules in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-01-15. An Exclusion Principle and the Importance of Mobility for a Class of Biofilm Models in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2015-03-18. Significant performance enhancement of a UASB reactor by using acyl homoserine lactones to facilitate the long filaments of Methanosaeta harundinacea 6Ac in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2017-07-24. Continuum and discrete approach in modeling biofilm development and structure: a review in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2008-02-07. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-12-05. A Modeling and Simulation Study of the Role of Suspended Microbial Populations in Nitrification in a Biofilm Reactor in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2010-08-02. The biofilm matrix in NATURE REVIEWS MICROBIOLOGY
  • 2020-06-12. Biofilm dispersion in NATURE REVIEWS MICROBIOLOGY
  • 2012-01-12. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2007-07-06. Bacterial cell attachment, the beginning of a biofilm in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 2017-07-17. Modeling de novo granulation of anaerobic sludge in BMC SYSTEMS BIOLOGY
  • 2015-11-18. A Mixed-Culture Biofilm Model with Cross-Diffusion in BULLETIN OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11538-021-00951-y

    DOI

    http://dx.doi.org/10.1007/s11538-021-00951-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142416132

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34741191


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tenore", 
            "givenName": "A.", 
            "id": "sg:person.016012704367.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012704367.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russo", 
            "givenName": "F.", 
            "id": "sg:person.010160244077.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010160244077.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mattei", 
            "givenName": "M. R.", 
            "id": "sg:person.01352127500.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352127500.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "D\u2019Acunto", 
            "givenName": "B.", 
            "id": "sg:person.015423202007.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015423202007.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33 Ireland", 
              "id": "http://www.grid.ac/institutes/grid.6142.1", 
              "name": [
                "Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33 Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Collins", 
            "givenName": "G.", 
            "id": "sg:person.0764102145.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764102145.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Department of Mathematics and Applications, University of Naples \u201cFederico II\u201d, Via Cintia 1, Monte S\u2019 Angelo, 80126 Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frunzo", 
            "givenName": "L.", 
            "id": "sg:person.01156644652.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156644652.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00285-017-1165-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090880769", 
              "https://doi.org/10.1007/s00285-017-1165-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-013-9898-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028193646", 
              "https://doi.org/10.1007/s11538-013-9898-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00033-019-1134-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115959158", 
              "https://doi.org/10.1007/s00033-019-1134-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-007-0234-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005602004", 
              "https://doi.org/10.1007/s10295-007-0234-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-020-0385-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128419921", 
              "https://doi.org/10.1038/s41579-020-0385-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006291616", 
              "https://doi.org/10.1038/nrmicro2415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004024090", 
              "https://doi.org/10.1038/ismej.2011.203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-015-0117-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025463939", 
              "https://doi.org/10.1007/s11538-015-0117-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-011-9707-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001572853", 
              "https://doi.org/10.1007/s11538-011-9707-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002530100766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031539306", 
              "https://doi.org/10.1007/s002530100766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12918-017-0443-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090744974", 
              "https://doi.org/10.1186/s12918-017-0443-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-015-6478-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039622598", 
              "https://doi.org/10.1007/s00253-015-6478-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-010-9621-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038783502", 
              "https://doi.org/10.1007/s11538-010-9621-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007358584", 
              "https://doi.org/10.1038/ismej.2008.12"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-06", 
        "datePublishedReg": "2021-11-06", 
        "description": "A multiscale mathematical model is presented to describe de novo granulation, and the evolution of multispecies granular biofilms, in a continuously fed bioreactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The equation governing the free boundary is derived from global mass balance considerations and takes into account the growth of sessile biomass as well as exchange fluxes with the bulk liquid. Starting from a vanishing initial value, the expansion of the free boundary is initiated by the attachment process, which depends on the microbial species concentrations within the bulk liquid and their specific attachment velocity. Nonlinear hyperbolic PDEs model the growth of the sessile microbial species, while quasi-linear parabolic PDEs govern the dynamics of substrates and invading species within the granular biofilm. Nonlinear ODEs govern the evolution of soluble substrates and planktonic biomass within the bulk liquid. The model is applied to an anaerobic, granular-based bioreactor system, and solved numerically to test its qualitative behaviour and explore the main aspects of de novo anaerobic granulation: ecology, biomass distribution, relative abundance, dimensional evolution of the granules and soluble substrates, and planktonic biomass dynamics within the bioreactor. The numerical results confirm that the model accurately describes the ecology and the concentrically layered structure of anaerobic granules observed experimentally, and that it can predict the effects on the process of significant factors, such as influent wastewater composition; granulation properties of planktonic biomass; biomass density; detachment intensity; and number of granules.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11538-021-00951-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "83"
          }
        ], 
        "keywords": [
          "anaerobic granulation", 
          "bulk liquid", 
          "granular biofilms", 
          "influent wastewater composition", 
          "free boundary", 
          "planktonic biomass", 
          "wastewater composition", 
          "multiscale modelling", 
          "anaerobic granules", 
          "soluble substrates", 
          "granulation properties", 
          "dynamics of substrate", 
          "bioreactor system", 
          "species concentrations", 
          "microbial species", 
          "numerical results", 
          "mathematical model", 
          "relative abundance", 
          "dimensional evolution", 
          "sessile biomass", 
          "exchange fluxes", 
          "biomass dynamics", 
          "bioreactor", 
          "nonlinear ODEs", 
          "biomass distribution", 
          "liquid", 
          "granulation", 
          "ecology", 
          "substrate", 
          "multiscale mathematical model", 
          "species", 
          "balance considerations", 
          "biomass", 
          "number of granules", 
          "biomass density", 
          "boundary domain", 
          "PDE model", 
          "biofilms", 
          "initial value", 
          "boundaries", 
          "granules", 
          "mass balance considerations", 
          "attachment process", 
          "velocity", 
          "qualitative behavior", 
          "evolution", 
          "model", 
          "main aspects", 
          "growth", 
          "parabolic PDEs", 
          "process", 
          "flux", 
          "abundance", 
          "modelling", 
          "properties", 
          "density", 
          "radial symmetry", 
          "equations", 
          "dynamics", 
          "behavior", 
          "domain", 
          "structure", 
          "system", 
          "significant factor", 
          "distribution", 
          "composition", 
          "account", 
          "results", 
          "consideration", 
          "PDE", 
          "ODEs", 
          "values", 
          "expansion", 
          "intensity", 
          "concentration", 
          "effect", 
          "symmetry", 
          "factors", 
          "number", 
          "aspects", 
          "de novo granulation", 
          "novo granulation", 
          "multispecies granular biofilms", 
          "spherical free boundary domain", 
          "free boundary domain", 
          "global mass balance considerations", 
          "microbial species concentrations", 
          "specific attachment velocity", 
          "attachment velocity", 
          "Nonlinear hyperbolic PDEs model", 
          "hyperbolic PDEs model", 
          "sessile microbial species", 
          "quasi-linear parabolic PDEs", 
          "granular-based bioreactor system", 
          "de novo anaerobic granulation", 
          "novo anaerobic granulation", 
          "planktonic biomass dynamics", 
          "detachment intensity"
        ], 
        "name": "Multiscale Modelling of De Novo Anaerobic Granulation", 
        "pagination": "122", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142416132"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11538-021-00951-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34741191"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11538-021-00951-y", 
          "https://app.dimensions.ai/details/publication/pub.1142416132"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_880.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11538-021-00951-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00951-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00951-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00951-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00951-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    254 TRIPLES      22 PREDICATES      138 URIs      116 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11538-021-00951-y schema:about anzsrc-for:01
    2 anzsrc-for:06
    3 schema:author Ndec4bb9e2a864f3a989a8085de98cf0d
    4 schema:citation sg:pub.10.1007/s00033-019-1134-y
    5 sg:pub.10.1007/s00253-015-6478-4
    6 sg:pub.10.1007/s002530100766
    7 sg:pub.10.1007/s00285-017-1165-y
    8 sg:pub.10.1007/s10295-007-0234-4
    9 sg:pub.10.1007/s11538-010-9621-5
    10 sg:pub.10.1007/s11538-011-9707-8
    11 sg:pub.10.1007/s11538-013-9898-2
    12 sg:pub.10.1007/s11538-015-0117-1
    13 sg:pub.10.1038/ismej.2008.12
    14 sg:pub.10.1038/ismej.2011.203
    15 sg:pub.10.1038/nrmicro2415
    16 sg:pub.10.1038/s41579-020-0385-0
    17 sg:pub.10.1186/s12918-017-0443-z
    18 schema:datePublished 2021-11-06
    19 schema:datePublishedReg 2021-11-06
    20 schema:description A multiscale mathematical model is presented to describe de novo granulation, and the evolution of multispecies granular biofilms, in a continuously fed bioreactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The equation governing the free boundary is derived from global mass balance considerations and takes into account the growth of sessile biomass as well as exchange fluxes with the bulk liquid. Starting from a vanishing initial value, the expansion of the free boundary is initiated by the attachment process, which depends on the microbial species concentrations within the bulk liquid and their specific attachment velocity. Nonlinear hyperbolic PDEs model the growth of the sessile microbial species, while quasi-linear parabolic PDEs govern the dynamics of substrates and invading species within the granular biofilm. Nonlinear ODEs govern the evolution of soluble substrates and planktonic biomass within the bulk liquid. The model is applied to an anaerobic, granular-based bioreactor system, and solved numerically to test its qualitative behaviour and explore the main aspects of de novo anaerobic granulation: ecology, biomass distribution, relative abundance, dimensional evolution of the granules and soluble substrates, and planktonic biomass dynamics within the bioreactor. The numerical results confirm that the model accurately describes the ecology and the concentrically layered structure of anaerobic granules observed experimentally, and that it can predict the effects on the process of significant factors, such as influent wastewater composition; granulation properties of planktonic biomass; biomass density; detachment intensity; and number of granules.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf Nb7583d4249264a77a5fad1346c320847
    25 Nd8b8244db8ce471b9ee9f38f8140254c
    26 sg:journal.1018370
    27 schema:keywords Nonlinear hyperbolic PDEs model
    28 ODEs
    29 PDE
    30 PDE model
    31 abundance
    32 account
    33 anaerobic granulation
    34 anaerobic granules
    35 aspects
    36 attachment process
    37 attachment velocity
    38 balance considerations
    39 behavior
    40 biofilms
    41 biomass
    42 biomass density
    43 biomass distribution
    44 biomass dynamics
    45 bioreactor
    46 bioreactor system
    47 boundaries
    48 boundary domain
    49 bulk liquid
    50 composition
    51 concentration
    52 consideration
    53 de novo anaerobic granulation
    54 de novo granulation
    55 density
    56 detachment intensity
    57 dimensional evolution
    58 distribution
    59 domain
    60 dynamics
    61 dynamics of substrate
    62 ecology
    63 effect
    64 equations
    65 evolution
    66 exchange fluxes
    67 expansion
    68 factors
    69 flux
    70 free boundary
    71 free boundary domain
    72 global mass balance considerations
    73 granular biofilms
    74 granular-based bioreactor system
    75 granulation
    76 granulation properties
    77 granules
    78 growth
    79 hyperbolic PDEs model
    80 influent wastewater composition
    81 initial value
    82 intensity
    83 liquid
    84 main aspects
    85 mass balance considerations
    86 mathematical model
    87 microbial species
    88 microbial species concentrations
    89 model
    90 modelling
    91 multiscale mathematical model
    92 multiscale modelling
    93 multispecies granular biofilms
    94 nonlinear ODEs
    95 novo anaerobic granulation
    96 novo granulation
    97 number
    98 number of granules
    99 numerical results
    100 parabolic PDEs
    101 planktonic biomass
    102 planktonic biomass dynamics
    103 process
    104 properties
    105 qualitative behavior
    106 quasi-linear parabolic PDEs
    107 radial symmetry
    108 relative abundance
    109 results
    110 sessile biomass
    111 sessile microbial species
    112 significant factor
    113 soluble substrates
    114 species
    115 species concentrations
    116 specific attachment velocity
    117 spherical free boundary domain
    118 structure
    119 substrate
    120 symmetry
    121 system
    122 values
    123 velocity
    124 wastewater composition
    125 schema:name Multiscale Modelling of De Novo Anaerobic Granulation
    126 schema:pagination 122
    127 schema:productId N858e5c1b8b234203a270b3dbc3b7deeb
    128 Na6775bf50a0042c7a8a8f0bf7ad78e21
    129 Ne86fe713eca64f96ac32f1805887a04c
    130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142416132
    131 https://doi.org/10.1007/s11538-021-00951-y
    132 schema:sdDatePublished 2022-01-01T18:59
    133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    134 schema:sdPublisher Nd1b754c2c10a4bf69ca4b913eaea959e
    135 schema:url https://doi.org/10.1007/s11538-021-00951-y
    136 sgo:license sg:explorer/license/
    137 sgo:sdDataset articles
    138 rdf:type schema:ScholarlyArticle
    139 N2a522ec70d0041dc84b492b0792d1257 rdf:first sg:person.015423202007.72
    140 rdf:rest N9a3f1351e43044e289a5d7a576230b89
    141 N5fd9b9c9324e448287be3ed8e267ebc4 rdf:first sg:person.01156644652.38
    142 rdf:rest rdf:nil
    143 N858e5c1b8b234203a270b3dbc3b7deeb schema:name pubmed_id
    144 schema:value 34741191
    145 rdf:type schema:PropertyValue
    146 N9a3f1351e43044e289a5d7a576230b89 rdf:first sg:person.0764102145.67
    147 rdf:rest N5fd9b9c9324e448287be3ed8e267ebc4
    148 Na6775bf50a0042c7a8a8f0bf7ad78e21 schema:name doi
    149 schema:value 10.1007/s11538-021-00951-y
    150 rdf:type schema:PropertyValue
    151 Nb7583d4249264a77a5fad1346c320847 schema:issueNumber 12
    152 rdf:type schema:PublicationIssue
    153 Nbd7fd7d782f141258b00c77cc0b88ccd rdf:first sg:person.01352127500.08
    154 rdf:rest N2a522ec70d0041dc84b492b0792d1257
    155 Nd1b754c2c10a4bf69ca4b913eaea959e schema:name Springer Nature - SN SciGraph project
    156 rdf:type schema:Organization
    157 Nd8b8244db8ce471b9ee9f38f8140254c schema:volumeNumber 83
    158 rdf:type schema:PublicationVolume
    159 Ndec4bb9e2a864f3a989a8085de98cf0d rdf:first sg:person.016012704367.92
    160 rdf:rest Ne88170db3ec546349a2ceb9fa8bc0baa
    161 Ne86fe713eca64f96ac32f1805887a04c schema:name dimensions_id
    162 schema:value pub.1142416132
    163 rdf:type schema:PropertyValue
    164 Ne88170db3ec546349a2ceb9fa8bc0baa rdf:first sg:person.010160244077.51
    165 rdf:rest Nbd7fd7d782f141258b00c77cc0b88ccd
    166 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Mathematical Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Biological Sciences
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1018370 schema:issn 0092-8240
    173 1522-9602
    174 schema:name Bulletin of Mathematical Biology
    175 schema:publisher Springer Nature
    176 rdf:type schema:Periodical
    177 sg:person.010160244077.51 schema:affiliation grid-institutes:grid.4691.a
    178 schema:familyName Russo
    179 schema:givenName F.
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010160244077.51
    181 rdf:type schema:Person
    182 sg:person.01156644652.38 schema:affiliation grid-institutes:grid.4691.a
    183 schema:familyName Frunzo
    184 schema:givenName L.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156644652.38
    186 rdf:type schema:Person
    187 sg:person.01352127500.08 schema:affiliation grid-institutes:grid.4691.a
    188 schema:familyName Mattei
    189 schema:givenName M. R.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352127500.08
    191 rdf:type schema:Person
    192 sg:person.015423202007.72 schema:affiliation grid-institutes:grid.4691.a
    193 schema:familyName D’Acunto
    194 schema:givenName B.
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015423202007.72
    196 rdf:type schema:Person
    197 sg:person.016012704367.92 schema:affiliation grid-institutes:grid.4691.a
    198 schema:familyName Tenore
    199 schema:givenName A.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012704367.92
    201 rdf:type schema:Person
    202 sg:person.0764102145.67 schema:affiliation grid-institutes:grid.6142.1
    203 schema:familyName Collins
    204 schema:givenName G.
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764102145.67
    206 rdf:type schema:Person
    207 sg:pub.10.1007/s00033-019-1134-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1115959158
    208 https://doi.org/10.1007/s00033-019-1134-y
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s00253-015-6478-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039622598
    211 https://doi.org/10.1007/s00253-015-6478-4
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s002530100766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031539306
    214 https://doi.org/10.1007/s002530100766
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00285-017-1165-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090880769
    217 https://doi.org/10.1007/s00285-017-1165-y
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s10295-007-0234-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005602004
    220 https://doi.org/10.1007/s10295-007-0234-4
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s11538-010-9621-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038783502
    223 https://doi.org/10.1007/s11538-010-9621-5
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s11538-011-9707-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001572853
    226 https://doi.org/10.1007/s11538-011-9707-8
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s11538-013-9898-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028193646
    229 https://doi.org/10.1007/s11538-013-9898-2
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s11538-015-0117-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025463939
    232 https://doi.org/10.1007/s11538-015-0117-1
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/ismej.2008.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007358584
    235 https://doi.org/10.1038/ismej.2008.12
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/ismej.2011.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004024090
    238 https://doi.org/10.1038/ismej.2011.203
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nrmicro2415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006291616
    241 https://doi.org/10.1038/nrmicro2415
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/s41579-020-0385-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128419921
    244 https://doi.org/10.1038/s41579-020-0385-0
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/s12918-017-0443-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1090744974
    247 https://doi.org/10.1186/s12918-017-0443-z
    248 rdf:type schema:CreativeWork
    249 grid-institutes:grid.4691.a schema:alternateName Department of Mathematics and Applications, University of Naples “Federico II”, Via Cintia 1, Monte S’ Angelo, 80126 Naples, Italy
    250 schema:name Department of Mathematics and Applications, University of Naples “Federico II”, Via Cintia 1, Monte S’ Angelo, 80126 Naples, Italy
    251 rdf:type schema:Organization
    252 grid-institutes:grid.6142.1 schema:alternateName Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33 Ireland
    253 schema:name Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33 Ireland
    254 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...