Experimental Data and PBPK Modeling Quantify Antibody Interference in PEGylated Drug Carrier Delivery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-09

AUTHORS

Anne M. Talkington, Timothy Wessler, Samuel K. Lai, Yanguang Cao, M. Gregory Forest

ABSTRACT

Physiologically-based pharmacokinetic (PBPK) modeling is a popular drug development tool that integrates physiology, drug physicochemical properties, preclinical data, and clinical information to predict drug systemic disposition. Since PBPK models seek to capture complex physiology, parameter uncertainty and variability is a prevailing challenge: there are often more compartments (e.g., organs, each with drug flux and retention mechanisms, and associated model parameters) than can be simultaneously measured. To improve the fidelity of PBPK modeling, one approach is to search and optimize within the high-dimensional model parameter space, based on experimental time-series measurements of drug distributions. Here, we employ Latin Hypercube Sampling (LHS) on a PBPK model of PEG-liposomes (PL) that tracks biodistribution in an 8-compartment mouse circulatory system, in the presence (APA+) or absence (naïve) of anti-PEG antibodies (APA). Near-continuous experimental measurements of PL concentration during the first hour post-injection from the liver, spleen, kidney, muscle, lung, and blood plasma, based on PET/CT imaging in live mice, are used as truth sets with LHS to infer optimal parameter ranges for the full PBPK model. The data and model quantify that PL retention in the liver is the primary differentiator of biodistribution patterns in naïve versus APA+ mice, and spleen the secondary differentiator. Retention of PEGylated nanomedicines is substantially amplified in APA+ mice, likely due to PL-bound APA engaging specific receptors in the liver and spleen that bind antibody Fc domains. Our work illustrates how applying LHS to PBPK models can further mechanistic understanding of the biodistribution and antibody-mediated clearance of specific drugs. More... »

PAGES

123

References to SciGraph publications

  • 2013-06. Improved MCMC method for parameter estimation based on marginal probability density function in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • 1993-07. Physiological Parameters in Laboratory Animals and Humans in PHARMACEUTICAL RESEARCH
  • 2013-04-11. Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification in IN SILICO PHARMACOLOGY
  • 2014-03-07. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients in ARTHRITIS RESEARCH & THERAPY
  • 1991-11. Interspecies Scaling of Clearance and Volume of Distribution Data for Five Therapeutic Proteins in PHARMACEUTICAL RESEARCH
  • 2012-11-23. Applications of minimal physiologically-based pharmacokinetic models in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2017-07-14. Utility of Physiologically Based Pharmacokinetic Absorption Modeling to Predict the Impact of Salt-to-Base Conversion on Prasugrel HCl Product Bioequivalence in the Presence of Proton Pump Inhibitors in THE AAPS JOURNAL
  • 2018-07-09. A Multiscale Physiologically-Based Pharmacokinetic Model for Doxorubicin to Explore its Mechanisms of Cytotoxicity and Cardiotoxicity in Human Physiological Contexts in PHARMACEUTICAL RESEARCH
  • 2014-03-04. Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout in ARTHRITIS RESEARCH & THERAPY
  • 2020-11-19. Ocular Physiologically Based Pharmacokinetic Modeling for Ointment Formulations in PHARMACEUTICAL RESEARCH
  • 2016-04-06. Sorafenib metabolism, transport, and enterohepatic recycling: physiologically based modeling and simulation in mice in CANCER CHEMOTHERAPY AND PHARMACOLOGY
  • 2007-07-18. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11538-021-00950-z

    DOI

    http://dx.doi.org/10.1007/s11538-021-00950-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142430515

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34751832


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC USA", 
              "id": "http://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Talkington", 
            "givenName": "Anne M.", 
            "id": "sg:person.0714021663.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714021663.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC USA", 
              "id": "http://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Department of Mathematics, University of North Carolina, Chapel Hill, NC USA", 
                "Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wessler", 
            "givenName": "Timothy", 
            "id": "sg:person.0760351561.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760351561.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC USA", 
              "id": "http://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC USA", 
                "Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA", 
                "UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA", 
                "Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lai", 
            "givenName": "Samuel K.", 
            "id": "sg:person.0612646147.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612646147.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC USA", 
              "id": "http://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Yanguang", 
            "id": "sg:person.0775257451.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775257451.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC USA", 
              "id": "http://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC USA", 
                "Department of Mathematics, University of North Carolina, Chapel Hill, NC USA", 
                "UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA", 
                "Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Forest", 
            "givenName": "M. Gregory", 
            "id": "sg:person.01075720724.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075720724.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1208/s12248-017-0116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090678319", 
              "https://doi.org/10.1208/s12248-017-0116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/ar4497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019006991", 
              "https://doi.org/10.1186/ar4497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2193-9616-1-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008088947", 
              "https://doi.org/10.1186/2193-9616-1-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-007-9065-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038100847", 
              "https://doi.org/10.1007/s10928-007-9065-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11095-020-02965-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132783718", 
              "https://doi.org/10.1007/s11095-020-02965-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11095-018-2456-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105426244", 
              "https://doi.org/10.1007/s11095-018-2456-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12206-013-0428-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003791587", 
              "https://doi.org/10.1007/s12206-013-0428-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015836720294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027848708", 
              "https://doi.org/10.1023/a:1015836720294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00280-016-3018-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053200196", 
              "https://doi.org/10.1007/s00280-016-3018-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-012-9280-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043943736", 
              "https://doi.org/10.1007/s10928-012-9280-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/ar4500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011531053", 
              "https://doi.org/10.1186/ar4500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018943613122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041332774", 
              "https://doi.org/10.1023/a:1018943613122"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-09", 
        "datePublishedReg": "2021-11-09", 
        "description": "Physiologically-based pharmacokinetic (PBPK) modeling is a popular drug development tool that integrates physiology, drug physicochemical properties, preclinical data, and clinical information to predict drug systemic disposition. Since PBPK models seek to capture complex physiology, parameter uncertainty and variability is a prevailing challenge: there are often more compartments (e.g., organs, each with drug flux and retention mechanisms, and associated model parameters) than can be simultaneously measured. To improve the fidelity of PBPK modeling, one approach is to search and optimize within the high-dimensional model parameter space, based on experimental time-series measurements of drug distributions. Here, we employ Latin Hypercube Sampling (LHS) on a PBPK model of PEG-liposomes (PL) that tracks biodistribution in an 8-compartment mouse circulatory system, in the presence (APA+) or absence (na\u00efve) of anti-PEG antibodies (APA). Near-continuous experimental measurements of PL concentration during the first hour post-injection from the liver, spleen, kidney, muscle, lung, and blood plasma, based on PET/CT imaging in live mice, are used as truth sets with LHS to infer optimal parameter ranges for the full PBPK model. The data and model quantify that PL retention in the liver is the primary differentiator of biodistribution patterns in na\u00efve versus APA+ mice, and spleen the secondary differentiator. Retention of PEGylated nanomedicines is substantially amplified in APA+ mice, likely due to PL-bound APA engaging specific receptors in the liver and spleen that bind antibody Fc domains. Our work illustrates how applying LHS to PBPK models can further mechanistic understanding of the biodistribution and antibody-mediated clearance of specific drugs.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11538-021-00950-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6934504", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7552527", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2684914", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4317994", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7569217", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5504276", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "83"
          }
        ], 
        "keywords": [
          "anti-PEG antibodies", 
          "PBPK model", 
          "PEG-liposomes", 
          "antibody-mediated clearance", 
          "PET/CT", 
          "full PBPK model", 
          "mouse circulatory system", 
          "drug development tools", 
          "antibody Fc domain", 
          "preclinical data", 
          "clinical information", 
          "antibody interference", 
          "systemic disposition", 
          "specific drugs", 
          "pharmacokinetic modeling", 
          "specific receptors", 
          "biodistribution pattern", 
          "PBPK modeling", 
          "liver", 
          "mice", 
          "drug distribution", 
          "complex physiology", 
          "first hour", 
          "Fc domain", 
          "circulatory system", 
          "spleen", 
          "drug physicochemical properties", 
          "PL concentration", 
          "blood plasma", 
          "live mice", 
          "biodistribution", 
          "lung", 
          "physiology", 
          "kidney", 
          "antibodies", 
          "CT", 
          "receptors", 
          "clearance", 
          "drugs", 
          "muscle", 
          "na\u00efve", 
          "hours", 
          "delivery", 
          "data", 
          "more compartments", 
          "compartments", 
          "retention", 
          "disposition", 
          "plasma", 
          "absence", 
          "mechanistic understanding", 
          "presence", 
          "concentration", 
          "patterns", 
          "nanomedicine", 
          "model", 
          "sampling", 
          "variability", 
          "measurements", 
          "challenges", 
          "understanding", 
          "carrier delivery", 
          "information", 
          "tool", 
          "primary differentiator", 
          "physicochemical properties", 
          "approach", 
          "quantifies", 
          "range", 
          "interference", 
          "system", 
          "distribution", 
          "domain", 
          "fidelity", 
          "work", 
          "properties", 
          "modeling", 
          "space", 
          "set", 
          "uncertainty", 
          "differentiator", 
          "optimal parameter range", 
          "Latin hypercube sampling", 
          "truth sets", 
          "development tools", 
          "experimental data", 
          "hypercube sampling", 
          "parameter uncertainties", 
          "time series measurements", 
          "parameter range", 
          "model parameter space", 
          "parameter space", 
          "experimental measurements", 
          "experimental time-series measurements", 
          "popular drug development tool", 
          "drug systemic disposition", 
          "high-dimensional model parameter space", 
          "continuous experimental measurements", 
          "model quantify", 
          "PL retention", 
          "secondary differentiator", 
          "bind antibody Fc domains", 
          "PBPK Modeling Quantify Antibody Interference", 
          "Modeling Quantify Antibody Interference", 
          "Quantify Antibody Interference", 
          "PEGylated Drug Carrier Delivery", 
          "Drug Carrier Delivery"
        ], 
        "name": "Experimental Data and PBPK Modeling Quantify Antibody Interference in PEGylated Drug Carrier Delivery", 
        "pagination": "123", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142430515"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11538-021-00950-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34751832"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11538-021-00950-z", 
          "https://app.dimensions.ai/details/publication/pub.1142430515"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_917.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11538-021-00950-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00950-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00950-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00950-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00950-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    266 TRIPLES      22 PREDICATES      145 URIs      125 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11538-021-00950-z schema:about anzsrc-for:01
    2 anzsrc-for:06
    3 schema:author Nf2d35e28326e49b8994fca8f2d304efc
    4 schema:citation sg:pub.10.1007/s00280-016-3018-6
    5 sg:pub.10.1007/s10928-007-9065-1
    6 sg:pub.10.1007/s10928-012-9280-2
    7 sg:pub.10.1007/s11095-018-2456-8
    8 sg:pub.10.1007/s11095-020-02965-y
    9 sg:pub.10.1007/s12206-013-0428-9
    10 sg:pub.10.1023/a:1015836720294
    11 sg:pub.10.1023/a:1018943613122
    12 sg:pub.10.1186/2193-9616-1-6
    13 sg:pub.10.1186/ar4497
    14 sg:pub.10.1186/ar4500
    15 sg:pub.10.1208/s12248-017-0116-2
    16 schema:datePublished 2021-11-09
    17 schema:datePublishedReg 2021-11-09
    18 schema:description Physiologically-based pharmacokinetic (PBPK) modeling is a popular drug development tool that integrates physiology, drug physicochemical properties, preclinical data, and clinical information to predict drug systemic disposition. Since PBPK models seek to capture complex physiology, parameter uncertainty and variability is a prevailing challenge: there are often more compartments (e.g., organs, each with drug flux and retention mechanisms, and associated model parameters) than can be simultaneously measured. To improve the fidelity of PBPK modeling, one approach is to search and optimize within the high-dimensional model parameter space, based on experimental time-series measurements of drug distributions. Here, we employ Latin Hypercube Sampling (LHS) on a PBPK model of PEG-liposomes (PL) that tracks biodistribution in an 8-compartment mouse circulatory system, in the presence (APA+) or absence (naïve) of anti-PEG antibodies (APA). Near-continuous experimental measurements of PL concentration during the first hour post-injection from the liver, spleen, kidney, muscle, lung, and blood plasma, based on PET/CT imaging in live mice, are used as truth sets with LHS to infer optimal parameter ranges for the full PBPK model. The data and model quantify that PL retention in the liver is the primary differentiator of biodistribution patterns in naïve versus APA+ mice, and spleen the secondary differentiator. Retention of PEGylated nanomedicines is substantially amplified in APA+ mice, likely due to PL-bound APA engaging specific receptors in the liver and spleen that bind antibody Fc domains. Our work illustrates how applying LHS to PBPK models can further mechanistic understanding of the biodistribution and antibody-mediated clearance of specific drugs.
    19 schema:genre article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N75592d751f8349d39651e0a10b550230
    23 Na904d89e0ace48c0ad199c3eb8bed0ca
    24 sg:journal.1018370
    25 schema:keywords CT
    26 Drug Carrier Delivery
    27 Fc domain
    28 Latin hypercube sampling
    29 Modeling Quantify Antibody Interference
    30 PBPK Modeling Quantify Antibody Interference
    31 PBPK model
    32 PBPK modeling
    33 PEG-liposomes
    34 PEGylated Drug Carrier Delivery
    35 PET/CT
    36 PL concentration
    37 PL retention
    38 Quantify Antibody Interference
    39 absence
    40 anti-PEG antibodies
    41 antibodies
    42 antibody Fc domain
    43 antibody interference
    44 antibody-mediated clearance
    45 approach
    46 bind antibody Fc domains
    47 biodistribution
    48 biodistribution pattern
    49 blood plasma
    50 carrier delivery
    51 challenges
    52 circulatory system
    53 clearance
    54 clinical information
    55 compartments
    56 complex physiology
    57 concentration
    58 continuous experimental measurements
    59 data
    60 delivery
    61 development tools
    62 differentiator
    63 disposition
    64 distribution
    65 domain
    66 drug development tools
    67 drug distribution
    68 drug physicochemical properties
    69 drug systemic disposition
    70 drugs
    71 experimental data
    72 experimental measurements
    73 experimental time-series measurements
    74 fidelity
    75 first hour
    76 full PBPK model
    77 high-dimensional model parameter space
    78 hours
    79 hypercube sampling
    80 information
    81 interference
    82 kidney
    83 live mice
    84 liver
    85 lung
    86 measurements
    87 mechanistic understanding
    88 mice
    89 model
    90 model parameter space
    91 model quantify
    92 modeling
    93 more compartments
    94 mouse circulatory system
    95 muscle
    96 nanomedicine
    97 naïve
    98 optimal parameter range
    99 parameter range
    100 parameter space
    101 parameter uncertainties
    102 patterns
    103 pharmacokinetic modeling
    104 physicochemical properties
    105 physiology
    106 plasma
    107 popular drug development tool
    108 preclinical data
    109 presence
    110 primary differentiator
    111 properties
    112 quantifies
    113 range
    114 receptors
    115 retention
    116 sampling
    117 secondary differentiator
    118 set
    119 space
    120 specific drugs
    121 specific receptors
    122 spleen
    123 system
    124 systemic disposition
    125 time series measurements
    126 tool
    127 truth sets
    128 uncertainty
    129 understanding
    130 variability
    131 work
    132 schema:name Experimental Data and PBPK Modeling Quantify Antibody Interference in PEGylated Drug Carrier Delivery
    133 schema:pagination 123
    134 schema:productId N1ba63bea3f004cdab8e4f61c1a7b50da
    135 N703b839446854a61982716200ba15745
    136 Ne289641d5b1847f1bce8c898e04a8289
    137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142430515
    138 https://doi.org/10.1007/s11538-021-00950-z
    139 schema:sdDatePublished 2022-01-01T19:03
    140 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    141 schema:sdPublisher N835602f1e03c42ecada303673e4c8e1b
    142 schema:url https://doi.org/10.1007/s11538-021-00950-z
    143 sgo:license sg:explorer/license/
    144 sgo:sdDataset articles
    145 rdf:type schema:ScholarlyArticle
    146 N1ba63bea3f004cdab8e4f61c1a7b50da schema:name dimensions_id
    147 schema:value pub.1142430515
    148 rdf:type schema:PropertyValue
    149 N703b839446854a61982716200ba15745 schema:name pubmed_id
    150 schema:value 34751832
    151 rdf:type schema:PropertyValue
    152 N75592d751f8349d39651e0a10b550230 schema:issueNumber 12
    153 rdf:type schema:PublicationIssue
    154 N835602f1e03c42ecada303673e4c8e1b schema:name Springer Nature - SN SciGraph project
    155 rdf:type schema:Organization
    156 N8f17b1756bbf47d4887d7d36b86ce99c rdf:first sg:person.0775257451.16
    157 rdf:rest Nea5c2479f34342b38e4d5da5a2f67b27
    158 N98011bc9884840ba960bd9ebcb8372a2 rdf:first sg:person.0760351561.39
    159 rdf:rest Nfa2d8ce24fb84f1fb14b9faae8fbf708
    160 Na904d89e0ace48c0ad199c3eb8bed0ca schema:volumeNumber 83
    161 rdf:type schema:PublicationVolume
    162 Ne289641d5b1847f1bce8c898e04a8289 schema:name doi
    163 schema:value 10.1007/s11538-021-00950-z
    164 rdf:type schema:PropertyValue
    165 Nea5c2479f34342b38e4d5da5a2f67b27 rdf:first sg:person.01075720724.12
    166 rdf:rest rdf:nil
    167 Nf2d35e28326e49b8994fca8f2d304efc rdf:first sg:person.0714021663.73
    168 rdf:rest N98011bc9884840ba960bd9ebcb8372a2
    169 Nfa2d8ce24fb84f1fb14b9faae8fbf708 rdf:first sg:person.0612646147.33
    170 rdf:rest N8f17b1756bbf47d4887d7d36b86ce99c
    171 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Mathematical Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Biological Sciences
    176 rdf:type schema:DefinedTerm
    177 sg:grant.2684914 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00950-z
    178 rdf:type schema:MonetaryGrant
    179 sg:grant.4317994 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00950-z
    180 rdf:type schema:MonetaryGrant
    181 sg:grant.5504276 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00950-z
    182 rdf:type schema:MonetaryGrant
    183 sg:grant.6934504 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00950-z
    184 rdf:type schema:MonetaryGrant
    185 sg:grant.7552527 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00950-z
    186 rdf:type schema:MonetaryGrant
    187 sg:grant.7569217 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00950-z
    188 rdf:type schema:MonetaryGrant
    189 sg:journal.1018370 schema:issn 0092-8240
    190 1522-9602
    191 schema:name Bulletin of Mathematical Biology
    192 schema:publisher Springer Nature
    193 rdf:type schema:Periodical
    194 sg:person.01075720724.12 schema:affiliation grid-institutes:grid.410711.2
    195 schema:familyName Forest
    196 schema:givenName M. Gregory
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075720724.12
    198 rdf:type schema:Person
    199 sg:person.0612646147.33 schema:affiliation grid-institutes:grid.410711.2
    200 schema:familyName Lai
    201 schema:givenName Samuel K.
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612646147.33
    203 rdf:type schema:Person
    204 sg:person.0714021663.73 schema:affiliation grid-institutes:grid.410711.2
    205 schema:familyName Talkington
    206 schema:givenName Anne M.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714021663.73
    208 rdf:type schema:Person
    209 sg:person.0760351561.39 schema:affiliation grid-institutes:grid.410711.2
    210 schema:familyName Wessler
    211 schema:givenName Timothy
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760351561.39
    213 rdf:type schema:Person
    214 sg:person.0775257451.16 schema:affiliation grid-institutes:grid.410711.2
    215 schema:familyName Cao
    216 schema:givenName Yanguang
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775257451.16
    218 rdf:type schema:Person
    219 sg:pub.10.1007/s00280-016-3018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053200196
    220 https://doi.org/10.1007/s00280-016-3018-6
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s10928-007-9065-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038100847
    223 https://doi.org/10.1007/s10928-007-9065-1
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s10928-012-9280-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043943736
    226 https://doi.org/10.1007/s10928-012-9280-2
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s11095-018-2456-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105426244
    229 https://doi.org/10.1007/s11095-018-2456-8
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s11095-020-02965-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1132783718
    232 https://doi.org/10.1007/s11095-020-02965-y
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s12206-013-0428-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003791587
    235 https://doi.org/10.1007/s12206-013-0428-9
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1023/a:1015836720294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027848708
    238 https://doi.org/10.1023/a:1015836720294
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1023/a:1018943613122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041332774
    241 https://doi.org/10.1023/a:1018943613122
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1186/2193-9616-1-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008088947
    244 https://doi.org/10.1186/2193-9616-1-6
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/ar4497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019006991
    247 https://doi.org/10.1186/ar4497
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1186/ar4500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011531053
    250 https://doi.org/10.1186/ar4500
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1208/s12248-017-0116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090678319
    253 https://doi.org/10.1208/s12248-017-0116-2
    254 rdf:type schema:CreativeWork
    255 grid-institutes:grid.410711.2 schema:alternateName Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC USA
    256 Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
    257 Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC USA
    258 Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC USA
    259 schema:name Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC USA
    260 Department of Mathematics, University of North Carolina, Chapel Hill, NC USA
    261 Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
    262 Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
    263 Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC USA
    264 Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC USA
    265 UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA
    266 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...