Modelling Immune Memory Development View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-23

AUTHORS

Eleonora Pascucci, Andrea Pugliese

ABSTRACT

The cellular adaptive immune response to influenza has been analyzed through several recent mathematical models. In particular, Zarnitsyna et al. (Front Immunol 7:1–9, 2016) show how central memory CD8+ T cells reach a plateau after repeated infections, and analyze their role in the immune response to further challenges. In this paper, we further investigate the theoretical features of that model by extracting from the infection dynamics a discrete map that describes the build-up of memory cells. Furthermore, we show how the model by Zarnitsyna et al. (Front Immunol 7:1–9, 2016) can be viewed as a fast-scale approximation of a model allowing for recruitment of target epithelial cells. Finally, we analyze which components of the model are essential to understand the progressive build-up of immune memory. This is performed through the analysis of simplified versions of the model that include some components only of immune response. The analysis performed may also provide a theoretical framework for understanding the conditions under which two-dose vaccination strategies can be helpful. More... »

PAGES

118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00949-6

DOI

http://dx.doi.org/10.1007/s11538-021-00949-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142086682

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34687362


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy", 
          "id": "http://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pascucci", 
        "givenName": "Eleonora", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy", 
          "id": "http://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pugliese", 
        "givenName": "Andrea", 
        "id": "sg:person.0771007435.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771007435.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00285-014-0769-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006871631", 
          "https://doi.org/10.1007/s00285-014-0769-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-018-1239-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103994934", 
          "https://doi.org/10.1007/s00285-018-1239-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-015-0880-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049963864", 
          "https://doi.org/10.1007/s00285-015-0880-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-020-00711-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125334202", 
          "https://doi.org/10.1007/s11538-020-00711-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-019-00618-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116645206", 
          "https://doi.org/10.1007/s11538-019-00618-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-23", 
    "datePublishedReg": "2021-10-23", 
    "description": "The cellular adaptive immune response to influenza has been analyzed through several recent mathematical models. In particular, Zarnitsyna et al. (Front Immunol 7:1\u20139, 2016) show how central memory CD8+ T cells reach a plateau after repeated infections, and analyze their role in the immune response to further challenges. In this paper, we further investigate the theoretical features of that model by extracting from the infection dynamics a discrete map that describes the build-up of memory cells. Furthermore, we show how the model by Zarnitsyna et al. (Front Immunol 7:1\u20139, 2016) can be viewed as a fast-scale approximation of a model allowing for recruitment of target epithelial cells. Finally, we analyze which components of the model are essential to understand the progressive build-up of immune memory. This is performed through the analysis of simplified versions of the model that include some components only of immune response. The analysis performed may also provide a theoretical framework for understanding the conditions under which two-dose vaccination strategies can be helpful.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00949-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "keywords": [
      "immune response", 
      "recent mathematical model", 
      "two-dose vaccination strategy", 
      "cellular adaptive immune response", 
      "mathematical model", 
      "discrete maps", 
      "central memory CD8", 
      "adaptive immune responses", 
      "immune memory development", 
      "theoretical features", 
      "target epithelial cells", 
      "memory CD8", 
      "vaccination strategies", 
      "immune memory", 
      "et al", 
      "epithelial cells", 
      "simplified version", 
      "infection dynamics", 
      "approximation", 
      "model", 
      "cells", 
      "response", 
      "CD8", 
      "influenza", 
      "infection", 
      "memory cells", 
      "dynamics", 
      "theoretical framework", 
      "al", 
      "memory development", 
      "recruitment", 
      "version", 
      "framework", 
      "role", 
      "further challenges", 
      "maps", 
      "analysis", 
      "components", 
      "conditions", 
      "development", 
      "strategies", 
      "features", 
      "memory", 
      "challenges", 
      "plateau", 
      "paper", 
      "Zarnitsyna et al", 
      "fast-scale approximation", 
      "Modelling Immune Memory Development"
    ], 
    "name": "Modelling Immune Memory Development", 
    "pagination": "118", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142086682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00949-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34687362"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00949-6", 
      "https://app.dimensions.ai/details/publication/pub.1142086682"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_912.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00949-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00949-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00949-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00949-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00949-6'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      79 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00949-6 schema:about anzsrc-for:01
2 anzsrc-for:06
3 schema:author N8cd86590d6d8447c82116b5bea21f40e
4 schema:citation sg:pub.10.1007/s00285-014-0769-8
5 sg:pub.10.1007/s00285-015-0880-5
6 sg:pub.10.1007/s00285-018-1239-5
7 sg:pub.10.1007/s11538-019-00618-9
8 sg:pub.10.1007/s11538-020-00711-4
9 schema:datePublished 2021-10-23
10 schema:datePublishedReg 2021-10-23
11 schema:description The cellular adaptive immune response to influenza has been analyzed through several recent mathematical models. In particular, Zarnitsyna et al. (Front Immunol 7:1–9, 2016) show how central memory CD8+ T cells reach a plateau after repeated infections, and analyze their role in the immune response to further challenges. In this paper, we further investigate the theoretical features of that model by extracting from the infection dynamics a discrete map that describes the build-up of memory cells. Furthermore, we show how the model by Zarnitsyna et al. (Front Immunol 7:1–9, 2016) can be viewed as a fast-scale approximation of a model allowing for recruitment of target epithelial cells. Finally, we analyze which components of the model are essential to understand the progressive build-up of immune memory. This is performed through the analysis of simplified versions of the model that include some components only of immune response. The analysis performed may also provide a theoretical framework for understanding the conditions under which two-dose vaccination strategies can be helpful.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1a520e14a2264bc0be76ce1b84436ccc
16 Nf90a714803a84e85b291559560c2a1f1
17 sg:journal.1018370
18 schema:keywords CD8
19 Modelling Immune Memory Development
20 Zarnitsyna et al
21 adaptive immune responses
22 al
23 analysis
24 approximation
25 cells
26 cellular adaptive immune response
27 central memory CD8
28 challenges
29 components
30 conditions
31 development
32 discrete maps
33 dynamics
34 epithelial cells
35 et al
36 fast-scale approximation
37 features
38 framework
39 further challenges
40 immune memory
41 immune memory development
42 immune response
43 infection
44 infection dynamics
45 influenza
46 maps
47 mathematical model
48 memory
49 memory CD8
50 memory cells
51 memory development
52 model
53 paper
54 plateau
55 recent mathematical model
56 recruitment
57 response
58 role
59 simplified version
60 strategies
61 target epithelial cells
62 theoretical features
63 theoretical framework
64 two-dose vaccination strategy
65 vaccination strategies
66 version
67 schema:name Modelling Immune Memory Development
68 schema:pagination 118
69 schema:productId N816d443ea82e404283aa0e57e7d9a2e6
70 Nbc8f95e227e240af8482b724417e6127
71 Ncc0fca3f4ed64db78577b1bbc01439e7
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142086682
73 https://doi.org/10.1007/s11538-021-00949-6
74 schema:sdDatePublished 2022-01-01T19:03
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N6d9b575541c649acbdd48db569a0b332
77 schema:url https://doi.org/10.1007/s11538-021-00949-6
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N1a520e14a2264bc0be76ce1b84436ccc schema:issueNumber 12
82 rdf:type schema:PublicationIssue
83 N3c80bb48ffe64343bbc97d73b3c6e028 schema:affiliation grid-institutes:grid.11696.39
84 schema:familyName Pascucci
85 schema:givenName Eleonora
86 rdf:type schema:Person
87 N6d9b575541c649acbdd48db569a0b332 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N816d443ea82e404283aa0e57e7d9a2e6 schema:name doi
90 schema:value 10.1007/s11538-021-00949-6
91 rdf:type schema:PropertyValue
92 N873fa8ac8e1c4001a25a8b65454b9785 rdf:first sg:person.0771007435.32
93 rdf:rest rdf:nil
94 N8cd86590d6d8447c82116b5bea21f40e rdf:first N3c80bb48ffe64343bbc97d73b3c6e028
95 rdf:rest N873fa8ac8e1c4001a25a8b65454b9785
96 Nbc8f95e227e240af8482b724417e6127 schema:name dimensions_id
97 schema:value pub.1142086682
98 rdf:type schema:PropertyValue
99 Ncc0fca3f4ed64db78577b1bbc01439e7 schema:name pubmed_id
100 schema:value 34687362
101 rdf:type schema:PropertyValue
102 Nf90a714803a84e85b291559560c2a1f1 schema:volumeNumber 83
103 rdf:type schema:PublicationVolume
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 sg:journal.1018370 schema:issn 0092-8240
111 1522-9602
112 schema:name Bulletin of Mathematical Biology
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.0771007435.32 schema:affiliation grid-institutes:grid.11696.39
116 schema:familyName Pugliese
117 schema:givenName Andrea
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771007435.32
119 rdf:type schema:Person
120 sg:pub.10.1007/s00285-014-0769-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006871631
121 https://doi.org/10.1007/s00285-014-0769-8
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00285-015-0880-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049963864
124 https://doi.org/10.1007/s00285-015-0880-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00285-018-1239-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103994934
127 https://doi.org/10.1007/s00285-018-1239-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11538-019-00618-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116645206
130 https://doi.org/10.1007/s11538-019-00618-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11538-020-00711-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125334202
133 https://doi.org/10.1007/s11538-020-00711-4
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.11696.39 schema:alternateName Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy
136 schema:name Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123, Povo, TN, Italy
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...