Ontology type: schema:ScholarlyArticle Open Access: True
2021-10-13
AUTHORSXue-Zhi Li, Shasha Gao, Yi-Ke Fu, Maia Martcheva
ABSTRACTIn this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{j}$$\end{document}, the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} and invasion reproduction numbers Rji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}^{i}$$\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions. More... »
PAGES116
http://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9
DOIhttp://dx.doi.org/10.1007/s11538-021-00946-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141837576
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/34643801
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Coinfection",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mathematical Concepts",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Biological",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China",
"id": "http://www.grid.ac/institutes/grid.462338.8",
"name": [
"School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Xue-Zhi",
"id": "sg:person.01333115455.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333115455.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA",
"id": "http://www.grid.ac/institutes/grid.15276.37",
"name": [
"Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA"
],
"type": "Organization"
},
"familyName": "Gao",
"givenName": "Shasha",
"id": "sg:person.07404350575.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404350575.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China",
"id": "http://www.grid.ac/institutes/grid.462338.8",
"name": [
"School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China"
],
"type": "Organization"
},
"familyName": "Fu",
"givenName": "Yi-Ke",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA",
"id": "http://www.grid.ac/institutes/grid.15276.37",
"name": [
"Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA"
],
"type": "Organization"
},
"familyName": "Martcheva",
"givenName": "Maia",
"id": "sg:person.01323323763.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323323763.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11071-011-0291-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046722112",
"https://doi.org/10.1007/s11071-011-0291-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-7612-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005758969",
"https://doi.org/10.1007/978-1-4899-7612-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10096-008-0654-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031125123",
"https://doi.org/10.1007/s10096-008-0654-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11538-007-9223-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037100163",
"https://doi.org/10.1007/s11538-007-9223-z"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-13",
"datePublishedReg": "2021-10-13",
"description": "In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R_{j}$$\\end{document}, the epidemiological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}$$\\end{document} and invasion reproduction numbers Rji\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}^{i}$$\\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}$$\\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions.",
"genre": "article",
"id": "sg:pub.10.1007/s11538-021-00946-9",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8132146",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.9381386",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1018370",
"issn": [
"0092-8240",
"1522-9602"
],
"name": "Bulletin of Mathematical Biology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "83"
}
],
"keywords": [
"invasion reproduction numbers",
"reproduction number",
"two-strain model",
"epidemiological reproduction number",
"coinfection",
"disease-free equilibrium",
"strains two",
"common occurrence",
"epidemiological dynamics",
"dominance equilibrium",
"host scale",
"individuals",
"strains",
"persisting",
"number",
"occurrence",
"scale",
"two",
"reproduction",
"addition",
"with",
"research",
"conditions",
"model",
"system",
"coexistence equilibrium",
"modeling",
"dynamics",
"equilibrium",
"paper",
"bistability",
"simulations",
"initial conditions",
"Coupled Systems"
],
"name": "Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection",
"pagination": "116",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141837576"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11538-021-00946-9"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"34643801"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11538-021-00946-9",
"https://app.dimensions.ai/details/publication/pub.1141837576"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:34",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_921.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11538-021-00946-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
22 PREDICATES
68 URIs
56 LITERALS
11 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11538-021-00946-9 | schema:about | N051ba8fd359c49e98ed69a3320cc3c3f |
2 | ″ | ″ | N7094a874fef449b09b61e74a279391eb |
3 | ″ | ″ | N94978ce6a1da4a259a4e3cf8d43e1989 |
4 | ″ | ″ | N9ae3be561bc34d7487910477844390ab |
5 | ″ | ″ | anzsrc-for:01 |
6 | ″ | ″ | anzsrc-for:06 |
7 | ″ | schema:author | N423d31579e2f4ee1b06cbe9216d0f959 |
8 | ″ | schema:citation | sg:pub.10.1007/978-1-4899-7612-3 |
9 | ″ | ″ | sg:pub.10.1007/s10096-008-0654-8 |
10 | ″ | ″ | sg:pub.10.1007/s11071-011-0291-0 |
11 | ″ | ″ | sg:pub.10.1007/s11538-007-9223-z |
12 | ″ | schema:datePublished | 2021-10-13 |
13 | ″ | schema:datePublishedReg | 2021-10-13 |
14 | ″ | schema:description | In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{j}$$\end{document}, the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} and invasion reproduction numbers Rji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}^{i}$$\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | true |
18 | ″ | schema:isPartOf | Nc5d464281cbc4b93b3e1794e080c6bc6 |
19 | ″ | ″ | Nd84ad02e610a465cb926d6a6fef91efc |
20 | ″ | ″ | sg:journal.1018370 |
21 | ″ | schema:keywords | Coupled Systems |
22 | ″ | ″ | addition |
23 | ″ | ″ | bistability |
24 | ″ | ″ | coexistence equilibrium |
25 | ″ | ″ | coinfection |
26 | ″ | ″ | common occurrence |
27 | ″ | ″ | conditions |
28 | ″ | ″ | disease-free equilibrium |
29 | ″ | ″ | dominance equilibrium |
30 | ″ | ″ | dynamics |
31 | ″ | ″ | epidemiological dynamics |
32 | ″ | ″ | epidemiological reproduction number |
33 | ″ | ″ | equilibrium |
34 | ″ | ″ | host scale |
35 | ″ | ″ | individuals |
36 | ″ | ″ | initial conditions |
37 | ″ | ″ | invasion reproduction numbers |
38 | ″ | ″ | model |
39 | ″ | ″ | modeling |
40 | ″ | ″ | number |
41 | ″ | ″ | occurrence |
42 | ″ | ″ | paper |
43 | ″ | ″ | persisting |
44 | ″ | ″ | reproduction |
45 | ″ | ″ | reproduction number |
46 | ″ | ″ | research |
47 | ″ | ″ | scale |
48 | ″ | ″ | simulations |
49 | ″ | ″ | strains |
50 | ″ | ″ | strains two |
51 | ″ | ″ | system |
52 | ″ | ″ | two |
53 | ″ | ″ | two-strain model |
54 | ″ | ″ | with |
55 | ″ | schema:name | Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection |
56 | ″ | schema:pagination | 116 |
57 | ″ | schema:productId | N2d5bf995544f4d81b27c1af504e18690 |
58 | ″ | ″ | N7714e77f514047dca0bfa50e4a26a60d |
59 | ″ | ″ | N7ca2537a1bdc45398f2938e298705e41 |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141837576 |
61 | ″ | ″ | https://doi.org/10.1007/s11538-021-00946-9 |
62 | ″ | schema:sdDatePublished | 2022-05-10T10:34 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N5b283361e057420a9e16aebefe8aa3c6 |
65 | ″ | schema:url | https://doi.org/10.1007/s11538-021-00946-9 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | articles |
68 | ″ | rdf:type | schema:ScholarlyArticle |
69 | N051ba8fd359c49e98ed69a3320cc3c3f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
70 | ″ | schema:name | Humans |
71 | ″ | rdf:type | schema:DefinedTerm |
72 | N10d081707ac443f48ae29db9d6736bef | rdf:first | Naa0a6dc61d964abf82cac2e0ea61385f |
73 | ″ | rdf:rest | N3edb3f978394433594d0c4e33b8be028 |
74 | N2d5bf995544f4d81b27c1af504e18690 | schema:name | dimensions_id |
75 | ″ | schema:value | pub.1141837576 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | N3edb3f978394433594d0c4e33b8be028 | rdf:first | sg:person.01323323763.52 |
78 | ″ | rdf:rest | rdf:nil |
79 | N423d31579e2f4ee1b06cbe9216d0f959 | rdf:first | sg:person.01333115455.90 |
80 | ″ | rdf:rest | N51fb3c8e79ed49f1b9a063b275c2cc2c |
81 | N51fb3c8e79ed49f1b9a063b275c2cc2c | rdf:first | sg:person.07404350575.42 |
82 | ″ | rdf:rest | N10d081707ac443f48ae29db9d6736bef |
83 | N5b283361e057420a9e16aebefe8aa3c6 | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | N7094a874fef449b09b61e74a279391eb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
86 | ″ | schema:name | Models, Biological |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | N7714e77f514047dca0bfa50e4a26a60d | schema:name | pubmed_id |
89 | ″ | schema:value | 34643801 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N7ca2537a1bdc45398f2938e298705e41 | schema:name | doi |
92 | ″ | schema:value | 10.1007/s11538-021-00946-9 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N94978ce6a1da4a259a4e3cf8d43e1989 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
95 | ″ | schema:name | Coinfection |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | N9ae3be561bc34d7487910477844390ab | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
98 | ″ | schema:name | Mathematical Concepts |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | Naa0a6dc61d964abf82cac2e0ea61385f | schema:affiliation | grid-institutes:grid.462338.8 |
101 | ″ | schema:familyName | Fu |
102 | ″ | schema:givenName | Yi-Ke |
103 | ″ | rdf:type | schema:Person |
104 | Nc5d464281cbc4b93b3e1794e080c6bc6 | schema:issueNumber | 11 |
105 | ″ | rdf:type | schema:PublicationIssue |
106 | Nd84ad02e610a465cb926d6a6fef91efc | schema:volumeNumber | 83 |
107 | ″ | rdf:type | schema:PublicationVolume |
108 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Mathematical Sciences |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Biological Sciences |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:grant.8132146 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11538-021-00946-9 |
115 | ″ | rdf:type | schema:MonetaryGrant |
116 | sg:grant.9381386 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11538-021-00946-9 |
117 | ″ | rdf:type | schema:MonetaryGrant |
118 | sg:journal.1018370 | schema:issn | 0092-8240 |
119 | ″ | ″ | 1522-9602 |
120 | ″ | schema:name | Bulletin of Mathematical Biology |
121 | ″ | schema:publisher | Springer Nature |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.01323323763.52 | schema:affiliation | grid-institutes:grid.15276.37 |
124 | ″ | schema:familyName | Martcheva |
125 | ″ | schema:givenName | Maia |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323323763.52 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.01333115455.90 | schema:affiliation | grid-institutes:grid.462338.8 |
129 | ″ | schema:familyName | Li |
130 | ″ | schema:givenName | Xue-Zhi |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333115455.90 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.07404350575.42 | schema:affiliation | grid-institutes:grid.15276.37 |
134 | ″ | schema:familyName | Gao |
135 | ″ | schema:givenName | Shasha |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404350575.42 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1007/978-1-4899-7612-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005758969 |
139 | ″ | ″ | https://doi.org/10.1007/978-1-4899-7612-3 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1007/s10096-008-0654-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031125123 |
142 | ″ | ″ | https://doi.org/10.1007/s10096-008-0654-8 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1007/s11071-011-0291-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046722112 |
145 | ″ | ″ | https://doi.org/10.1007/s11071-011-0291-0 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1007/s11538-007-9223-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037100163 |
148 | ″ | ″ | https://doi.org/10.1007/s11538-007-9223-z |
149 | ″ | rdf:type | schema:CreativeWork |
150 | grid-institutes:grid.15276.37 | schema:alternateName | Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611–8105, Gainesville, FL, USA |
151 | ″ | schema:name | Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611–8105, Gainesville, FL, USA |
152 | ″ | rdf:type | schema:Organization |
153 | grid-institutes:grid.462338.8 | schema:alternateName | School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China |
154 | ″ | schema:name | School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China |
155 | ″ | rdf:type | schema:Organization |