Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-13

AUTHORS

Xue-Zhi Li, Shasha Gao, Yi-Ke Fu, Maia Martcheva

ABSTRACT

In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{j}$$\end{document}, the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} and invasion reproduction numbers Rji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}^{i}$$\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions. More... »

PAGES

116

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9

DOI

http://dx.doi.org/10.1007/s11538-021-00946-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141837576

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34643801


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coinfection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China", 
          "id": "http://www.grid.ac/institutes/grid.462338.8", 
          "name": [
            "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xue-Zhi", 
        "id": "sg:person.01333115455.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333115455.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Shasha", 
        "id": "sg:person.07404350575.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404350575.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China", 
          "id": "http://www.grid.ac/institutes/grid.462338.8", 
          "name": [
            "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Yi-Ke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martcheva", 
        "givenName": "Maia", 
        "id": "sg:person.01323323763.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323323763.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11071-011-0291-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046722112", 
          "https://doi.org/10.1007/s11071-011-0291-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-7612-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005758969", 
          "https://doi.org/10.1007/978-1-4899-7612-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10096-008-0654-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031125123", 
          "https://doi.org/10.1007/s10096-008-0654-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-007-9223-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037100163", 
          "https://doi.org/10.1007/s11538-007-9223-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-13", 
    "datePublishedReg": "2021-10-13", 
    "description": "In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R_{j}$$\\end{document}, the epidemiological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}$$\\end{document} and invasion reproduction numbers Rji\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}^{i}$$\\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}$$\\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00946-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8132146", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9381386", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "keywords": [
      "invasion reproduction numbers", 
      "reproduction number", 
      "two-strain model", 
      "epidemiological reproduction number", 
      "coinfection", 
      "disease-free equilibrium", 
      "strains two", 
      "common occurrence", 
      "epidemiological dynamics", 
      "dominance equilibrium", 
      "host scale", 
      "individuals", 
      "strains", 
      "persisting", 
      "number", 
      "occurrence", 
      "scale", 
      "two", 
      "reproduction", 
      "addition", 
      "with", 
      "research", 
      "conditions", 
      "model", 
      "system", 
      "coexistence equilibrium", 
      "modeling", 
      "dynamics", 
      "equilibrium", 
      "paper", 
      "bistability", 
      "simulations", 
      "initial conditions", 
      "Coupled Systems"
    ], 
    "name": "Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection", 
    "pagination": "116", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141837576"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00946-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34643801"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00946-9", 
      "https://app.dimensions.ai/details/publication/pub.1141837576"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_921.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00946-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      68 URIs      56 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00946-9 schema:about N051ba8fd359c49e98ed69a3320cc3c3f
2 N7094a874fef449b09b61e74a279391eb
3 N94978ce6a1da4a259a4e3cf8d43e1989
4 N9ae3be561bc34d7487910477844390ab
5 anzsrc-for:01
6 anzsrc-for:06
7 schema:author N423d31579e2f4ee1b06cbe9216d0f959
8 schema:citation sg:pub.10.1007/978-1-4899-7612-3
9 sg:pub.10.1007/s10096-008-0654-8
10 sg:pub.10.1007/s11071-011-0291-0
11 sg:pub.10.1007/s11538-007-9223-z
12 schema:datePublished 2021-10-13
13 schema:datePublishedReg 2021-10-13
14 schema:description In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{j}$$\end{document}, the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} and invasion reproduction numbers Rji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}^{i}$$\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf Nc5d464281cbc4b93b3e1794e080c6bc6
19 Nd84ad02e610a465cb926d6a6fef91efc
20 sg:journal.1018370
21 schema:keywords Coupled Systems
22 addition
23 bistability
24 coexistence equilibrium
25 coinfection
26 common occurrence
27 conditions
28 disease-free equilibrium
29 dominance equilibrium
30 dynamics
31 epidemiological dynamics
32 epidemiological reproduction number
33 equilibrium
34 host scale
35 individuals
36 initial conditions
37 invasion reproduction numbers
38 model
39 modeling
40 number
41 occurrence
42 paper
43 persisting
44 reproduction
45 reproduction number
46 research
47 scale
48 simulations
49 strains
50 strains two
51 system
52 two
53 two-strain model
54 with
55 schema:name Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection
56 schema:pagination 116
57 schema:productId N2d5bf995544f4d81b27c1af504e18690
58 N7714e77f514047dca0bfa50e4a26a60d
59 N7ca2537a1bdc45398f2938e298705e41
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141837576
61 https://doi.org/10.1007/s11538-021-00946-9
62 schema:sdDatePublished 2022-05-10T10:34
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N5b283361e057420a9e16aebefe8aa3c6
65 schema:url https://doi.org/10.1007/s11538-021-00946-9
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N051ba8fd359c49e98ed69a3320cc3c3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N10d081707ac443f48ae29db9d6736bef rdf:first Naa0a6dc61d964abf82cac2e0ea61385f
73 rdf:rest N3edb3f978394433594d0c4e33b8be028
74 N2d5bf995544f4d81b27c1af504e18690 schema:name dimensions_id
75 schema:value pub.1141837576
76 rdf:type schema:PropertyValue
77 N3edb3f978394433594d0c4e33b8be028 rdf:first sg:person.01323323763.52
78 rdf:rest rdf:nil
79 N423d31579e2f4ee1b06cbe9216d0f959 rdf:first sg:person.01333115455.90
80 rdf:rest N51fb3c8e79ed49f1b9a063b275c2cc2c
81 N51fb3c8e79ed49f1b9a063b275c2cc2c rdf:first sg:person.07404350575.42
82 rdf:rest N10d081707ac443f48ae29db9d6736bef
83 N5b283361e057420a9e16aebefe8aa3c6 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N7094a874fef449b09b61e74a279391eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Models, Biological
87 rdf:type schema:DefinedTerm
88 N7714e77f514047dca0bfa50e4a26a60d schema:name pubmed_id
89 schema:value 34643801
90 rdf:type schema:PropertyValue
91 N7ca2537a1bdc45398f2938e298705e41 schema:name doi
92 schema:value 10.1007/s11538-021-00946-9
93 rdf:type schema:PropertyValue
94 N94978ce6a1da4a259a4e3cf8d43e1989 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Coinfection
96 rdf:type schema:DefinedTerm
97 N9ae3be561bc34d7487910477844390ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Mathematical Concepts
99 rdf:type schema:DefinedTerm
100 Naa0a6dc61d964abf82cac2e0ea61385f schema:affiliation grid-institutes:grid.462338.8
101 schema:familyName Fu
102 schema:givenName Yi-Ke
103 rdf:type schema:Person
104 Nc5d464281cbc4b93b3e1794e080c6bc6 schema:issueNumber 11
105 rdf:type schema:PublicationIssue
106 Nd84ad02e610a465cb926d6a6fef91efc schema:volumeNumber 83
107 rdf:type schema:PublicationVolume
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 sg:grant.8132146 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00946-9
115 rdf:type schema:MonetaryGrant
116 sg:grant.9381386 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00946-9
117 rdf:type schema:MonetaryGrant
118 sg:journal.1018370 schema:issn 0092-8240
119 1522-9602
120 schema:name Bulletin of Mathematical Biology
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.01323323763.52 schema:affiliation grid-institutes:grid.15276.37
124 schema:familyName Martcheva
125 schema:givenName Maia
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323323763.52
127 rdf:type schema:Person
128 sg:person.01333115455.90 schema:affiliation grid-institutes:grid.462338.8
129 schema:familyName Li
130 schema:givenName Xue-Zhi
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333115455.90
132 rdf:type schema:Person
133 sg:person.07404350575.42 schema:affiliation grid-institutes:grid.15276.37
134 schema:familyName Gao
135 schema:givenName Shasha
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404350575.42
137 rdf:type schema:Person
138 sg:pub.10.1007/978-1-4899-7612-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005758969
139 https://doi.org/10.1007/978-1-4899-7612-3
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10096-008-0654-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031125123
142 https://doi.org/10.1007/s10096-008-0654-8
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11071-011-0291-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046722112
145 https://doi.org/10.1007/s11071-011-0291-0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11538-007-9223-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037100163
148 https://doi.org/10.1007/s11538-007-9223-z
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.15276.37 schema:alternateName Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611–8105, Gainesville, FL, USA
151 schema:name Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611–8105, Gainesville, FL, USA
152 rdf:type schema:Organization
153 grid-institutes:grid.462338.8 schema:alternateName School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China
154 schema:name School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...