Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-13

AUTHORS

Xue-Zhi Li, Shasha Gao, Yi-Ke Fu, Maia Martcheva

ABSTRACT

In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{j}$$\end{document}, the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} and invasion reproduction numbers Rji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}^{i}$$\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions. More... »

PAGES

116

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9

DOI

http://dx.doi.org/10.1007/s11538-021-00946-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141837576

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34643801


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China", 
          "id": "http://www.grid.ac/institutes/grid.462338.8", 
          "name": [
            "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xue-Zhi", 
        "id": "sg:person.01333115455.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333115455.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Shasha", 
        "id": "sg:person.010414361567.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414361567.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China", 
          "id": "http://www.grid.ac/institutes/grid.462338.8", 
          "name": [
            "School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Yi-Ke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611\u20138105, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martcheva", 
        "givenName": "Maia", 
        "id": "sg:person.01323323763.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323323763.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11538-007-9223-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037100163", 
          "https://doi.org/10.1007/s11538-007-9223-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-7612-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005758969", 
          "https://doi.org/10.1007/978-1-4899-7612-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0291-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046722112", 
          "https://doi.org/10.1007/s11071-011-0291-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10096-008-0654-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031125123", 
          "https://doi.org/10.1007/s10096-008-0654-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-13", 
    "datePublishedReg": "2021-10-13", 
    "description": "In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R_{j}$$\\end{document}, the epidemiological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}$$\\end{document} and invasion reproduction numbers Rji\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}^{i}$$\\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {R}}_{j}$$\\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00946-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9381386", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8132146", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "keywords": [
      "invasion reproduction numbers", 
      "two-strain model", 
      "reproduction number", 
      "epidemiological reproduction numbers", 
      "coinfection", 
      "disease-free equilibrium", 
      "common occurrence", 
      "strains two", 
      "epidemiological dynamics", 
      "host scale", 
      "individuals", 
      "strains", 
      "persisting", 
      "number", 
      "dominance equilibrium", 
      "occurrence", 
      "scale", 
      "two", 
      "reproduction", 
      "addition", 
      "with", 
      "research", 
      "conditions", 
      "model", 
      "system", 
      "coexistence equilibrium", 
      "modeling", 
      "dynamics", 
      "equilibrium", 
      "paper", 
      "bistability", 
      "simulations", 
      "initial conditions", 
      "Coupled System", 
      "larger immunological reproduction number persisting", 
      "immunological reproduction number persisting", 
      "reproduction number persisting", 
      "number persisting", 
      "population scale coinfection", 
      "scale coinfection", 
      "immunological reproduction", 
      "epidemiological reproduction", 
      "corresponding epidemiological reproduction number", 
      "Immuno-Epidemiological Coupled System"
    ], 
    "name": "Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection", 
    "pagination": "116", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141837576"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00946-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34643801"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00946-9", 
      "https://app.dimensions.ai/details/publication/pub.1141837576"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_899.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00946-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00946-9'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      74 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00946-9 schema:about anzsrc-for:01
2 anzsrc-for:06
3 schema:author N78d157178a48417fa9cb3cdafc4553ed
4 schema:citation sg:pub.10.1007/978-1-4899-7612-3
5 sg:pub.10.1007/s10096-008-0654-8
6 sg:pub.10.1007/s11071-011-0291-0
7 sg:pub.10.1007/s11538-007-9223-z
8 schema:datePublished 2021-10-13
9 schema:datePublishedReg 2021-10-13
10 schema:description In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{j}$$\end{document}, the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} and invasion reproduction numbers Rji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}^{i}$$\end{document} are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers Rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_{j}$$\end{document} are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N7ddcd460e65c4e3b8a248fbf183b30ac
15 Nc7c180fcdb4e4df7b092b12eece4a957
16 sg:journal.1018370
17 schema:keywords Coupled System
18 Immuno-Epidemiological Coupled System
19 addition
20 bistability
21 coexistence equilibrium
22 coinfection
23 common occurrence
24 conditions
25 corresponding epidemiological reproduction number
26 disease-free equilibrium
27 dominance equilibrium
28 dynamics
29 epidemiological dynamics
30 epidemiological reproduction
31 epidemiological reproduction numbers
32 equilibrium
33 host scale
34 immunological reproduction
35 immunological reproduction number persisting
36 individuals
37 initial conditions
38 invasion reproduction numbers
39 larger immunological reproduction number persisting
40 model
41 modeling
42 number
43 number persisting
44 occurrence
45 paper
46 persisting
47 population scale coinfection
48 reproduction
49 reproduction number
50 reproduction number persisting
51 research
52 scale
53 scale coinfection
54 simulations
55 strains
56 strains two
57 system
58 two
59 two-strain model
60 with
61 schema:name Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection
62 schema:pagination 116
63 schema:productId N37c9b9a64abc46c0b1cc60c1581ec37e
64 N82c70880552d412ca73ed38ad496993c
65 Ne37d169a9bd74ec08a82648d1d021418
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141837576
67 https://doi.org/10.1007/s11538-021-00946-9
68 schema:sdDatePublished 2022-01-01T19:02
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N9557347a8438408293cabbdfa5b5de7d
71 schema:url https://doi.org/10.1007/s11538-021-00946-9
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N204bdd169ac5439c9909e3116c28282a schema:affiliation grid-institutes:grid.462338.8
76 schema:familyName Fu
77 schema:givenName Yi-Ke
78 rdf:type schema:Person
79 N37c9b9a64abc46c0b1cc60c1581ec37e schema:name dimensions_id
80 schema:value pub.1141837576
81 rdf:type schema:PropertyValue
82 N78d157178a48417fa9cb3cdafc4553ed rdf:first sg:person.01333115455.90
83 rdf:rest N82a22634f4e243f9b974224e83d3a6a9
84 N7ddcd460e65c4e3b8a248fbf183b30ac schema:issueNumber 11
85 rdf:type schema:PublicationIssue
86 N82a22634f4e243f9b974224e83d3a6a9 rdf:first sg:person.010414361567.04
87 rdf:rest Ne96d8adaa4dc4ed9ba4d5b0f5e66495e
88 N82c70880552d412ca73ed38ad496993c schema:name doi
89 schema:value 10.1007/s11538-021-00946-9
90 rdf:type schema:PropertyValue
91 N9557347a8438408293cabbdfa5b5de7d schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Na2c40049c48742cbbd388b3180df9ab8 rdf:first sg:person.01323323763.52
94 rdf:rest rdf:nil
95 Nc7c180fcdb4e4df7b092b12eece4a957 schema:volumeNumber 83
96 rdf:type schema:PublicationVolume
97 Ne37d169a9bd74ec08a82648d1d021418 schema:name pubmed_id
98 schema:value 34643801
99 rdf:type schema:PropertyValue
100 Ne96d8adaa4dc4ed9ba4d5b0f5e66495e rdf:first N204bdd169ac5439c9909e3116c28282a
101 rdf:rest Na2c40049c48742cbbd388b3180df9ab8
102 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
103 schema:name Mathematical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
106 schema:name Biological Sciences
107 rdf:type schema:DefinedTerm
108 sg:grant.8132146 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00946-9
109 rdf:type schema:MonetaryGrant
110 sg:grant.9381386 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00946-9
111 rdf:type schema:MonetaryGrant
112 sg:journal.1018370 schema:issn 0092-8240
113 1522-9602
114 schema:name Bulletin of Mathematical Biology
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.010414361567.04 schema:affiliation grid-institutes:grid.15276.37
118 schema:familyName Gao
119 schema:givenName Shasha
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414361567.04
121 rdf:type schema:Person
122 sg:person.01323323763.52 schema:affiliation grid-institutes:grid.15276.37
123 schema:familyName Martcheva
124 schema:givenName Maia
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323323763.52
126 rdf:type schema:Person
127 sg:person.01333115455.90 schema:affiliation grid-institutes:grid.462338.8
128 schema:familyName Li
129 schema:givenName Xue-Zhi
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333115455.90
131 rdf:type schema:Person
132 sg:pub.10.1007/978-1-4899-7612-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005758969
133 https://doi.org/10.1007/978-1-4899-7612-3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10096-008-0654-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031125123
136 https://doi.org/10.1007/s10096-008-0654-8
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11071-011-0291-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046722112
139 https://doi.org/10.1007/s11071-011-0291-0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11538-007-9223-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037100163
142 https://doi.org/10.1007/s11538-007-9223-z
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.15276.37 schema:alternateName Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611–8105, Gainesville, FL, USA
145 schema:name Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, 32611–8105, Gainesville, FL, USA
146 rdf:type schema:Organization
147 grid-institutes:grid.462338.8 schema:alternateName School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China
148 schema:name School of Mathematics and Information Science, Henan Normal University, 453007, Xinxiang, China
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...