Modelling Oscillatory Patterns in the Bovine Estrous Cycle with Boolean Delay Equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-02

AUTHORS

Mascha Berg, Julia Plöntzke, Heike Siebert, Susanna Röblitz

ABSTRACT

Boolean delay equations (BDEs), with their relatively simple and intuitive mode of modelling, have been used in many research areas including, for example, climate dynamics and earthquake propagation. Their application to biological systems has been scarce and limited to the molecular level. Here, we derive and present two BDE models. One is directly derived from a previously published ordinary differential equation (ODE) model for the bovine estrous cycle, whereas the second model includes a modification of a particular biological mechanism. We not only compare the simulation results from the BDE models with the trajectories of the ODE model, but also validate the BDE models with two additional numerical experiments. One experiment induces a switch in the oscillatory pattern upon changes in the model parameters, and the other simulates the administration of a hormone that is known to shift the estrous cycle in time. The models presented here are the first BDE models for hormonal oscillators, and the first BDE models for drug administration. Even though automatic parameter estimation still remains challenging, our results support the role of BDEs as a framework for the systematic modelling of complex biological oscillators. More... »

PAGES

121

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-021-00942-z

DOI

http://dx.doi.org/10.1007/s11538-021-00942-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142336594

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34727249


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Zuse Institute Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berg", 
        "givenName": "Mascha", 
        "id": "sg:person.016667366373.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667366373.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Zuse Institute Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pl\u00f6ntzke", 
        "givenName": "Julia", 
        "id": "sg:person.01307231043.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307231043.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Freie Universit\u00e4t, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Department of Mathematics and Computer Science, Freie Universit\u00e4t, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siebert", 
        "givenName": "Heike", 
        "id": "sg:person.01333461253.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333461253.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway", 
          "id": "http://www.grid.ac/institutes/grid.7914.b", 
          "name": [
            "Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f6blitz", 
        "givenName": "Susanna", 
        "id": "sg:person.01010225436.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010225436.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01088850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020506992", 
          "https://doi.org/10.1007/bf01088850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1746-6148-8-220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037235632", 
          "https://doi.org/10.1186/1746-6148-8-220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-6-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031794619", 
          "https://doi.org/10.1186/1752-0509-6-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022850215752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043171724", 
          "https://doi.org/10.1023/a:1022850215752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01020607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017359440", 
          "https://doi.org/10.1007/bf01020607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-02", 
    "datePublishedReg": "2021-11-02", 
    "description": "Boolean delay equations (BDEs), with their relatively simple and intuitive mode of modelling, have been used in many research areas including, for example, climate dynamics and earthquake propagation. Their application to biological systems has been scarce and limited to the molecular level. Here, we derive and present two BDE models. One is directly derived from a previously published ordinary differential equation (ODE) model for the bovine estrous cycle, whereas the second model includes a modification of a particular biological mechanism. We not only compare the simulation results from the BDE models with the trajectories of the ODE model, but also validate the BDE models with two additional numerical experiments. One experiment induces a switch in the oscillatory pattern upon changes in the model parameters, and the other simulates the administration of a hormone that is known to shift the estrous cycle in time. The models presented here are the first BDE models for hormonal oscillators, and the first BDE models for drug administration. Even though automatic parameter estimation still remains challenging, our results support the role of BDEs as a framework for the systematic modelling of complex biological oscillators.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-021-00942-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7993231", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "keywords": [
      "Boolean delay equations", 
      "BDE model", 
      "delay equations", 
      "ordinary differential equation model", 
      "differential equation model", 
      "ODE model", 
      "automatic parameter estimation", 
      "parameter estimation", 
      "numerical experiments", 
      "particular biological mechanism", 
      "Additional numerical experiments", 
      "model parameters", 
      "systematic modelling", 
      "biological oscillators", 
      "equations", 
      "simulation results", 
      "second model", 
      "oscillatory patterns", 
      "equation model", 
      "oscillator", 
      "modelling", 
      "model", 
      "biological systems", 
      "earthquake propagation", 
      "propagation", 
      "estimation", 
      "dynamics", 
      "research area", 
      "climate dynamics", 
      "trajectories", 
      "parameters", 
      "applications", 
      "framework", 
      "experiments", 
      "results", 
      "system", 
      "mode", 
      "bovine estrous cycle", 
      "switch", 
      "time", 
      "cycle", 
      "patterns", 
      "modification", 
      "area", 
      "biological mechanisms", 
      "mechanism", 
      "changes", 
      "levels", 
      "role", 
      "intuitive mode", 
      "molecular level", 
      "Drug Administration", 
      "example", 
      "administration", 
      "estrous cycle", 
      "hormone", 
      "first BDE models", 
      "hormonal oscillators", 
      "role of BDEs", 
      "complex biological oscillators", 
      "Modelling Oscillatory Patterns"
    ], 
    "name": "Modelling Oscillatory Patterns in the Bovine Estrous Cycle with Boolean Delay Equations", 
    "pagination": "121", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142336594"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-021-00942-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34727249"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-021-00942-z", 
      "https://app.dimensions.ai/details/publication/pub.1142336594"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_881.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-021-00942-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00942-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00942-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00942-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-021-00942-z'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      92 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-021-00942-z schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N78d19f8ec22d49ca81a7f91dec0bb5d1
4 schema:citation sg:pub.10.1007/bf01020607
5 sg:pub.10.1007/bf01088850
6 sg:pub.10.1023/a:1022850215752
7 sg:pub.10.1186/1746-6148-8-220
8 sg:pub.10.1186/1752-0509-6-116
9 schema:datePublished 2021-11-02
10 schema:datePublishedReg 2021-11-02
11 schema:description Boolean delay equations (BDEs), with their relatively simple and intuitive mode of modelling, have been used in many research areas including, for example, climate dynamics and earthquake propagation. Their application to biological systems has been scarce and limited to the molecular level. Here, we derive and present two BDE models. One is directly derived from a previously published ordinary differential equation (ODE) model for the bovine estrous cycle, whereas the second model includes a modification of a particular biological mechanism. We not only compare the simulation results from the BDE models with the trajectories of the ODE model, but also validate the BDE models with two additional numerical experiments. One experiment induces a switch in the oscillatory pattern upon changes in the model parameters, and the other simulates the administration of a hormone that is known to shift the estrous cycle in time. The models presented here are the first BDE models for hormonal oscillators, and the first BDE models for drug administration. Even though automatic parameter estimation still remains challenging, our results support the role of BDEs as a framework for the systematic modelling of complex biological oscillators.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf Naaa8360a4f504089aede71d639972fd1
16 Ne3e9d35754f04490827a8d99816dda81
17 sg:journal.1018370
18 schema:keywords Additional numerical experiments
19 BDE model
20 Boolean delay equations
21 Drug Administration
22 Modelling Oscillatory Patterns
23 ODE model
24 administration
25 applications
26 area
27 automatic parameter estimation
28 biological mechanisms
29 biological oscillators
30 biological systems
31 bovine estrous cycle
32 changes
33 climate dynamics
34 complex biological oscillators
35 cycle
36 delay equations
37 differential equation model
38 dynamics
39 earthquake propagation
40 equation model
41 equations
42 estimation
43 estrous cycle
44 example
45 experiments
46 first BDE models
47 framework
48 hormonal oscillators
49 hormone
50 intuitive mode
51 levels
52 mechanism
53 mode
54 model
55 model parameters
56 modelling
57 modification
58 molecular level
59 numerical experiments
60 ordinary differential equation model
61 oscillator
62 oscillatory patterns
63 parameter estimation
64 parameters
65 particular biological mechanism
66 patterns
67 propagation
68 research area
69 results
70 role
71 role of BDEs
72 second model
73 simulation results
74 switch
75 system
76 systematic modelling
77 time
78 trajectories
79 schema:name Modelling Oscillatory Patterns in the Bovine Estrous Cycle with Boolean Delay Equations
80 schema:pagination 121
81 schema:productId N04565ceec81741de8cbe270d41d70b7f
82 N93f90a8f7c6644a7ae1cb66d14ef0e28
83 Ncf94ed8e74e943499f6fd7b0c3687a88
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142336594
85 https://doi.org/10.1007/s11538-021-00942-z
86 schema:sdDatePublished 2022-01-01T19:00
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N2e4f39dc06ff4dc89bf5f36a97aa9f39
89 schema:url https://doi.org/10.1007/s11538-021-00942-z
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N04565ceec81741de8cbe270d41d70b7f schema:name doi
94 schema:value 10.1007/s11538-021-00942-z
95 rdf:type schema:PropertyValue
96 N2e4f39dc06ff4dc89bf5f36a97aa9f39 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N52d3728f63b84bbe8aab0b73e04a14d3 rdf:first sg:person.01307231043.89
99 rdf:rest Nb713e678785044b781c4a7a2c18fe093
100 N78d19f8ec22d49ca81a7f91dec0bb5d1 rdf:first sg:person.016667366373.21
101 rdf:rest N52d3728f63b84bbe8aab0b73e04a14d3
102 N93f90a8f7c6644a7ae1cb66d14ef0e28 schema:name pubmed_id
103 schema:value 34727249
104 rdf:type schema:PropertyValue
105 Naaa8360a4f504089aede71d639972fd1 schema:volumeNumber 83
106 rdf:type schema:PublicationVolume
107 Nb713e678785044b781c4a7a2c18fe093 rdf:first sg:person.01333461253.12
108 rdf:rest Nb735e39ae0d141c58d4afb20583069ea
109 Nb735e39ae0d141c58d4afb20583069ea rdf:first sg:person.01010225436.47
110 rdf:rest rdf:nil
111 Ncf94ed8e74e943499f6fd7b0c3687a88 schema:name dimensions_id
112 schema:value pub.1142336594
113 rdf:type schema:PropertyValue
114 Ne3e9d35754f04490827a8d99816dda81 schema:issueNumber 12
115 rdf:type schema:PublicationIssue
116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
117 schema:name Mathematical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
120 schema:name Applied Mathematics
121 rdf:type schema:DefinedTerm
122 sg:grant.7993231 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-021-00942-z
123 rdf:type schema:MonetaryGrant
124 sg:journal.1018370 schema:issn 0092-8240
125 1522-9602
126 schema:name Bulletin of Mathematical Biology
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.01010225436.47 schema:affiliation grid-institutes:grid.7914.b
130 schema:familyName Röblitz
131 schema:givenName Susanna
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010225436.47
133 rdf:type schema:Person
134 sg:person.01307231043.89 schema:affiliation grid-institutes:grid.425649.8
135 schema:familyName Plöntzke
136 schema:givenName Julia
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307231043.89
138 rdf:type schema:Person
139 sg:person.01333461253.12 schema:affiliation grid-institutes:grid.14095.39
140 schema:familyName Siebert
141 schema:givenName Heike
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333461253.12
143 rdf:type schema:Person
144 sg:person.016667366373.21 schema:affiliation grid-institutes:grid.425649.8
145 schema:familyName Berg
146 schema:givenName Mascha
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667366373.21
148 rdf:type schema:Person
149 sg:pub.10.1007/bf01020607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017359440
150 https://doi.org/10.1007/bf01020607
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf01088850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020506992
153 https://doi.org/10.1007/bf01088850
154 rdf:type schema:CreativeWork
155 sg:pub.10.1023/a:1022850215752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043171724
156 https://doi.org/10.1023/a:1022850215752
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1746-6148-8-220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037235632
159 https://doi.org/10.1186/1746-6148-8-220
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1752-0509-6-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031794619
162 https://doi.org/10.1186/1752-0509-6-116
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.14095.39 schema:alternateName Department of Mathematics and Computer Science, Freie Universität, Berlin, Germany
165 schema:name Department of Mathematics and Computer Science, Freie Universität, Berlin, Germany
166 rdf:type schema:Organization
167 grid-institutes:grid.425649.8 schema:alternateName Zuse Institute Berlin, Berlin, Germany
168 schema:name Zuse Institute Berlin, Berlin, Germany
169 rdf:type schema:Organization
170 grid-institutes:grid.7914.b schema:alternateName Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
171 schema:name Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...