A Growth-Fragmentation Approach for Modeling Microtubule Dynamic Instability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Stéphane Honoré, Florence Hubert, Magali Tournus, Diana White

ABSTRACT

Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial for many cellular processes including cell movement, cell differentiation, and cell division. Due to their role in cell division, they are often used as targets for chemotherapy drugs used in cancer treatment. Experimental studies of MT dynamics have played an important role in the development and administration of many novel cancer drugs; however, a complete description of MT dynamics is lacking. Here, we propose a new mathematical model for MT dynamics, that can be used to study the effects of chemotherapy drugs on MT dynamics. Our model consists of a growth-fragmentation equation describing the dynamics of a length distribution of MTs, coupled with two ODEs that describe the dynamics of free GTP- and GDP-tubulin concentrations (the individual dimers that comprise of MTs). Here, we prove the well-posedness of our system and perform a numerical exploration of the influence of certain model parameters on the systems dynamics. In particular, we focus on a qualitative description for how a certain class of destabilizing drugs, the vinca alkaloids, alter MT dynamics. Through variation of certain model parameters which we know are altered by these drugs, we make comparisons between simulation results and what is observed in in vitro studies. More... »

PAGES

1-37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-018-0531-2

DOI

http://dx.doi.org/10.1007/s11538-018-0531-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110226917

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30484040


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Marseille Public University Hospital System", 
          "id": "https://www.grid.ac/institutes/grid.414336.7", 
          "name": [
            "CNRS, INP, Inst Neurophysiopathol, Facult\u00e9 de Pharmacie de Marseille, Aix Marseille University, 13385, Marseille, France", 
            "Service pharmacie, CHU H\u00f4pital de La Timone, APHM, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honor\u00e9", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.01015152417.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015152417.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Math\u00e9matiques de Marseille", 
          "id": "https://www.grid.ac/institutes/grid.473594.8", 
          "name": [
            "CNRS, Centrale Marseille, I2M, Aix Marseille University, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hubert", 
        "givenName": "Florence", 
        "id": "sg:person.0605040460.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605040460.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Math\u00e9matiques de Marseille", 
          "id": "https://www.grid.ac/institutes/grid.473594.8", 
          "name": [
            "CNRS, Centrale Marseille, I2M, Aix Marseille University, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tournus", 
        "givenName": "Magali", 
        "id": "sg:person.01005575115.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005575115.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Department of Mathematics, Clarkson University, Potsdam, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "White", 
        "givenName": "Diana", 
        "id": "sg:person.016254122401.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016254122401.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jtbi.2006.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000029830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12033-009-9193-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000855761", 
          "https://doi.org/10.1007/s12033-009-9193-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12033-009-9193-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000855761", 
          "https://doi.org/10.1007/s12033-009-9193-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2005.12.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001406197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1300395110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004825876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e11-08-0688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012466402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.6.9.1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014817102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.81.18.5772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016266422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020709483", 
          "https://doi.org/10.1038/nrc1317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020709483", 
          "https://doi.org/10.1038/nrc1317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1998.0861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022304801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.107.4.1437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024491733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anihpc.2004.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025001035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-13-0791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027135440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.031904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027626953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.031904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027626953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.cellbio.13.1.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030719430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2015.06.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030795335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/312237a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034838064", 
          "https://doi.org/10.1038/312237a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17513750902935208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038582633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1006/bulm.2001.0265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039856914", 
          "https://doi.org/10.1006/bulm.2001.0265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-006-0279-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042252456", 
          "https://doi.org/10.1007/s00028-006-0279-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-014-9991-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043353460", 
          "https://doi.org/10.1007/s11538-014-9991-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceb.2012.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044523537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.041920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052178986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.041920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052178986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.5538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.5538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1165401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062458976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568011053352569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069192017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079112453", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2017.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086115917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118033302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106833018"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial for many cellular processes including cell movement, cell differentiation, and cell division. Due to their role in cell division, they are often used as targets for chemotherapy drugs used in cancer treatment. Experimental studies of MT dynamics have played an important role in the development and administration of many novel cancer drugs; however, a complete description of MT dynamics is lacking. Here, we propose a new mathematical model for MT dynamics, that can be used to study the effects of chemotherapy drugs on MT dynamics. Our model consists of a growth-fragmentation equation describing the dynamics of a length distribution of MTs, coupled with two ODEs that describe the dynamics of free GTP- and GDP-tubulin concentrations (the individual dimers that comprise of MTs). Here, we prove the well-posedness of our system and perform a numerical exploration of the influence of certain model parameters on the systems dynamics. In particular, we focus on a qualitative description for how a certain class of destabilizing drugs, the vinca alkaloids, alter MT dynamics. Through variation of certain model parameters which we know are altered by these drugs, we make comparisons between simulation results and what is observed in in vitro studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11538-018-0531-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "type": "Periodical"
      }
    ], 
    "name": "A Growth-Fragmentation Approach for Modeling Microtubule Dynamic Instability", 
    "pagination": "1-37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3007e5157e9880e4ee961b627205bd19b53aa0fdac7fe27a95538ce3beb3ccf4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30484040"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0401404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-018-0531-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110226917"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-018-0531-2", 
      "https://app.dimensions.ai/details/publication/pub.1110226917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79653_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11538-018-0531-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-0531-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-0531-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-0531-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-0531-2'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-018-0531-2 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Ndf9713d1a5834486a9d82f2fb0af438d
4 schema:citation sg:pub.10.1006/bulm.2001.0265
5 sg:pub.10.1007/s00028-006-0279-2
6 sg:pub.10.1007/s11538-014-9991-1
7 sg:pub.10.1007/s12033-009-9193-5
8 sg:pub.10.1038/312237a0
9 sg:pub.10.1038/nrc1317
10 https://app.dimensions.ai/details/publication/pub.1079112453
11 https://doi.org/10.1002/9781118033302
12 https://doi.org/10.1006/jtbi.1998.0861
13 https://doi.org/10.1016/j.anihpc.2004.06.001
14 https://doi.org/10.1016/j.ceb.2012.09.006
15 https://doi.org/10.1016/j.jmaa.2005.12.036
16 https://doi.org/10.1016/j.jtbi.2006.04.010
17 https://doi.org/10.1016/j.jtbi.2015.06.040
18 https://doi.org/10.1016/j.jtbi.2017.06.014
19 https://doi.org/10.1073/pnas.1300395110
20 https://doi.org/10.1073/pnas.81.18.5772
21 https://doi.org/10.1080/17513750902935208
22 https://doi.org/10.1083/jcb.107.4.1437
23 https://doi.org/10.1091/mbc.6.9.1215
24 https://doi.org/10.1091/mbc.e11-08-0688
25 https://doi.org/10.1103/physreve.54.5538
26 https://doi.org/10.1103/physreve.74.041920
27 https://doi.org/10.1103/physreve.80.031904
28 https://doi.org/10.1103/physrevlett.70.1347
29 https://doi.org/10.1126/science.1165401
30 https://doi.org/10.1146/annurev.cellbio.13.1.83
31 https://doi.org/10.1158/1535-7163.mct-13-0791
32 https://doi.org/10.2174/1568011053352569
33 schema:datePublished 2019-03
34 schema:datePublishedReg 2019-03-01
35 schema:description Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial for many cellular processes including cell movement, cell differentiation, and cell division. Due to their role in cell division, they are often used as targets for chemotherapy drugs used in cancer treatment. Experimental studies of MT dynamics have played an important role in the development and administration of many novel cancer drugs; however, a complete description of MT dynamics is lacking. Here, we propose a new mathematical model for MT dynamics, that can be used to study the effects of chemotherapy drugs on MT dynamics. Our model consists of a growth-fragmentation equation describing the dynamics of a length distribution of MTs, coupled with two ODEs that describe the dynamics of free GTP- and GDP-tubulin concentrations (the individual dimers that comprise of MTs). Here, we prove the well-posedness of our system and perform a numerical exploration of the influence of certain model parameters on the systems dynamics. In particular, we focus on a qualitative description for how a certain class of destabilizing drugs, the vinca alkaloids, alter MT dynamics. Through variation of certain model parameters which we know are altered by these drugs, we make comparisons between simulation results and what is observed in in vitro studies.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf sg:journal.1018370
40 schema:name A Growth-Fragmentation Approach for Modeling Microtubule Dynamic Instability
41 schema:pagination 1-37
42 schema:productId N135289460d9845abb97383cb8f599e93
43 N1c90eb85bcfa44a7a95767d0de4bf718
44 N4c505f77eea54da798b662b9d377ca64
45 Na53a12eab0ae4bd68a1e665a06e36e80
46 Nc16fb531cb2e44cc98294a00433bce9d
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110226917
48 https://doi.org/10.1007/s11538-018-0531-2
49 schema:sdDatePublished 2019-04-11T08:16
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N8fbd722717694d269c34290292de466b
52 schema:url https://link.springer.com/10.1007%2Fs11538-018-0531-2
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N135289460d9845abb97383cb8f599e93 schema:name nlm_unique_id
57 schema:value 0401404
58 rdf:type schema:PropertyValue
59 N1bc25f9ec84c406284f550f87f2c1a15 rdf:first sg:person.016254122401.85
60 rdf:rest rdf:nil
61 N1c90eb85bcfa44a7a95767d0de4bf718 schema:name dimensions_id
62 schema:value pub.1110226917
63 rdf:type schema:PropertyValue
64 N4c505f77eea54da798b662b9d377ca64 schema:name doi
65 schema:value 10.1007/s11538-018-0531-2
66 rdf:type schema:PropertyValue
67 N5e85c5cf3f6849ad9502a3cc1e689386 rdf:first sg:person.0605040460.47
68 rdf:rest Nd557f2e946d24168ae40fb399fe77c39
69 N8fbd722717694d269c34290292de466b schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Na53a12eab0ae4bd68a1e665a06e36e80 schema:name readcube_id
72 schema:value 3007e5157e9880e4ee961b627205bd19b53aa0fdac7fe27a95538ce3beb3ccf4
73 rdf:type schema:PropertyValue
74 Nc16fb531cb2e44cc98294a00433bce9d schema:name pubmed_id
75 schema:value 30484040
76 rdf:type schema:PropertyValue
77 Nd557f2e946d24168ae40fb399fe77c39 rdf:first sg:person.01005575115.13
78 rdf:rest N1bc25f9ec84c406284f550f87f2c1a15
79 Ndf9713d1a5834486a9d82f2fb0af438d rdf:first sg:person.01015152417.03
80 rdf:rest N5e85c5cf3f6849ad9502a3cc1e689386
81 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
82 schema:name Biological Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
85 schema:name Biochemistry and Cell Biology
86 rdf:type schema:DefinedTerm
87 sg:journal.1018370 schema:issn 0092-8240
88 1522-9602
89 schema:name Bulletin of Mathematical Biology
90 rdf:type schema:Periodical
91 sg:person.01005575115.13 schema:affiliation https://www.grid.ac/institutes/grid.473594.8
92 schema:familyName Tournus
93 schema:givenName Magali
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005575115.13
95 rdf:type schema:Person
96 sg:person.01015152417.03 schema:affiliation https://www.grid.ac/institutes/grid.414336.7
97 schema:familyName Honoré
98 schema:givenName Stéphane
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015152417.03
100 rdf:type schema:Person
101 sg:person.016254122401.85 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
102 schema:familyName White
103 schema:givenName Diana
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016254122401.85
105 rdf:type schema:Person
106 sg:person.0605040460.47 schema:affiliation https://www.grid.ac/institutes/grid.473594.8
107 schema:familyName Hubert
108 schema:givenName Florence
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605040460.47
110 rdf:type schema:Person
111 sg:pub.10.1006/bulm.2001.0265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039856914
112 https://doi.org/10.1006/bulm.2001.0265
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00028-006-0279-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042252456
115 https://doi.org/10.1007/s00028-006-0279-2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11538-014-9991-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043353460
118 https://doi.org/10.1007/s11538-014-9991-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12033-009-9193-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000855761
121 https://doi.org/10.1007/s12033-009-9193-5
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/312237a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034838064
124 https://doi.org/10.1038/312237a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nrc1317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020709483
127 https://doi.org/10.1038/nrc1317
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1079112453 schema:CreativeWork
130 https://doi.org/10.1002/9781118033302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106833018
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/jtbi.1998.0861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022304801
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.anihpc.2004.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025001035
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ceb.2012.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044523537
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jmaa.2005.12.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001406197
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jtbi.2006.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000029830
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jtbi.2015.06.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030795335
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jtbi.2017.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086115917
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.1300395110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004825876
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.81.18.5772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016266422
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/17513750902935208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038582633
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1083/jcb.107.4.1437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491733
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1091/mbc.6.9.1215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014817102
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1091/mbc.e11-08-0688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012466402
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.54.5538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720055
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreve.74.041920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052178986
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreve.80.031904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027626953
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.70.1347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806406
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.1165401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062458976
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1146/annurev.cellbio.13.1.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030719430
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1158/1535-7163.mct-13-0791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027135440
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2174/1568011053352569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069192017
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
175 schema:name Department of Mathematics, Clarkson University, Potsdam, NY, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.414336.7 schema:alternateName Marseille Public University Hospital System
178 schema:name CNRS, INP, Inst Neurophysiopathol, Faculté de Pharmacie de Marseille, Aix Marseille University, 13385, Marseille, France
179 Service pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.473594.8 schema:alternateName Institut de Mathématiques de Marseille
182 schema:name CNRS, Centrale Marseille, I2M, Aix Marseille University, Marseille, France
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...