Universal Statistics of Incubation Periods and Other Detection Times via Diffusion Models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Yuri Bakhtin

ABSTRACT

We suggest an explanation of typical incubation times statistical features based on the universal behavior of exit times for diffusion models. We give a mathematically rigorous proof of the characteristic right skewness of the incubation time distribution for very general one-dimensional diffusion models. Imposing natural simple conditions on the drift coefficient, we also study these diffusion models under the assumption of noise smallness and show that the limiting exit time distributions in the limit of vanishing noise are Gaussian and Gumbel. Thus, they match the existing data as well as the other existing models do. The character of our models, however, allows us to argue that the features of the exit time distributions that we describe are universal and manifest themselves in various other situations where the times involved can be described as detection or halting times, for example response times studied in psychology. More... »

PAGES

1070-1088

References to SciGraph publications

  • 2012. Random Perturbations of Dynamical Systems in NONE
  • 1990. Some Phenomena of the Characteristic Boundary Exit Problem in DIFFUSION PROCESSES AND RELATED PROBLEMS IN ANALYSIS, VOLUME I
  • 2012-07. Decision Making Times in Mean-Field Dynamic Ising Model in ANNALES HENRI POINCARÉ
  • 2011-06. Noisy heteroclinic networks in PROBABILITY THEORY AND RELATED FIELDS
  • Journal

    TITLE

    Bulletin of Mathematical Biology

    ISSUE

    4

    VOLUME

    81

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11538-018-00558-w

    DOI

    http://dx.doi.org/10.1007/s11538-018-00558-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110708175

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30560441


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Courant Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.482020.c", 
              "name": [
                "Courant Institute of Mathematical Sciences, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bakhtin", 
            "givenName": "Yuri", 
            "id": "sg:person.01327752120.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00440-010-0264-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000387165", 
              "https://doi.org/10.1007/s00440-010-0264-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1473-3099(14)71075-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009179005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-011-0148-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018348749", 
              "https://doi.org/10.1007/s00023-011-0148-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17442508408833304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018893985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.6.2.65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026403032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.6.2.65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026403032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spa.2007.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026784286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spa.2010.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031622600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2012.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042452942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1045083534", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-25847-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045083534", 
              "https://doi.org/10.1007/978-3-642-25847-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-25847-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045083534", 
              "https://doi.org/10.1007/978-3-642-25847-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14689367.2010.482520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052693718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1413446111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053644787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/tran/6574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059351458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s021949371550001x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062995318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.aje.a119397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076914346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0564-4_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089816325", 
              "https://doi.org/10.1007/978-1-4684-0564-4_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.96.012313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090660983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.96.012313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090660983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.21715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091323650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/1483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091937513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/17m1110900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092698533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780195070019.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098742165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.30212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099904626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470316658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109496263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109496263", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "We suggest an explanation of typical incubation times statistical features based on the universal behavior of exit times for diffusion models. We give a mathematically rigorous proof of the characteristic right skewness of the incubation time distribution for very general one-dimensional diffusion models. Imposing natural simple conditions on the drift coefficient, we also study these diffusion models under the assumption of noise smallness and show that the limiting exit time distributions in the limit of vanishing noise are Gaussian and Gumbel. Thus, they match the existing data as well as the other existing models do. The character of our models, however, allows us to argue that the features of the exit time distributions that we describe are universal and manifest themselves in various other situations where the times involved can be described as detection or halting times, for example response times studied in psychology.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11538-018-00558-w", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7553345", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "81"
          }
        ], 
        "name": "Universal Statistics of Incubation Periods and Other Detection Times via Diffusion Models", 
        "pagination": "1070-1088", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "237cfc0003a215a6949c1fb9c522dea9bf644bad56bed99ce884d1313c587602"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30560441"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0401404"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11538-018-00558-w"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110708175"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11538-018-00558-w", 
          "https://app.dimensions.ai/details/publication/pub.1110708175"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11538-018-00558-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-00558-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-00558-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-00558-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-018-00558-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11538-018-00558-w schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nc6fc9c3f1f0e423085feb750c4ddbeb3
    4 schema:citation sg:pub.10.1007/978-1-4684-0564-4_4
    5 sg:pub.10.1007/978-3-642-25847-3
    6 sg:pub.10.1007/s00023-011-0148-6
    7 sg:pub.10.1007/s00440-010-0264-0
    8 https://app.dimensions.ai/details/publication/pub.1045083534
    9 https://app.dimensions.ai/details/publication/pub.1109496263
    10 https://doi.org/10.1002/9780470316658
    11 https://doi.org/10.1002/cpa.21715
    12 https://doi.org/10.1016/j.jmp.2012.05.005
    13 https://doi.org/10.1016/j.spa.2007.06.003
    14 https://doi.org/10.1016/j.spa.2010.09.002
    15 https://doi.org/10.1016/s1473-3099(14)71075-8
    16 https://doi.org/10.1073/pnas.1413446111
    17 https://doi.org/10.1080/14689367.2010.482520
    18 https://doi.org/10.1080/17442508408833304
    19 https://doi.org/10.1090/qam/1483
    20 https://doi.org/10.1090/tran/6574
    21 https://doi.org/10.1093/acprof:oso/9780195070019.001.0001
    22 https://doi.org/10.1093/oxfordjournals.aje.a119397
    23 https://doi.org/10.1103/physreve.96.012313
    24 https://doi.org/10.1136/oem.6.2.65
    25 https://doi.org/10.1137/17m1110900
    26 https://doi.org/10.1142/s021949371550001x
    27 https://doi.org/10.7554/elife.30212
    28 schema:datePublished 2019-04
    29 schema:datePublishedReg 2019-04-01
    30 schema:description We suggest an explanation of typical incubation times statistical features based on the universal behavior of exit times for diffusion models. We give a mathematically rigorous proof of the characteristic right skewness of the incubation time distribution for very general one-dimensional diffusion models. Imposing natural simple conditions on the drift coefficient, we also study these diffusion models under the assumption of noise smallness and show that the limiting exit time distributions in the limit of vanishing noise are Gaussian and Gumbel. Thus, they match the existing data as well as the other existing models do. The character of our models, however, allows us to argue that the features of the exit time distributions that we describe are universal and manifest themselves in various other situations where the times involved can be described as detection or halting times, for example response times studied in psychology.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N73a57afb2c634f2abe2315038f088b5c
    35 Nf1df536303cf42a0acb3e12fb1a27825
    36 sg:journal.1018370
    37 schema:name Universal Statistics of Incubation Periods and Other Detection Times via Diffusion Models
    38 schema:pagination 1070-1088
    39 schema:productId N36d50f1444bb4ec4bed43611d7bb0f4b
    40 N3c6c3a608e2d42e9a21a2e4cc0fb9337
    41 N41910f30f2f344f5a99c8ad331cfb09b
    42 Ncc2bdf0b82ef4cdeb4920ebd16336885
    43 Nd1344cf04f4b4997a48ab3f807fe009c
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110708175
    45 https://doi.org/10.1007/s11538-018-00558-w
    46 schema:sdDatePublished 2019-04-11T10:31
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nff6ffb917836442b88867999707b32ed
    49 schema:url https://link.springer.com/10.1007%2Fs11538-018-00558-w
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N36d50f1444bb4ec4bed43611d7bb0f4b schema:name nlm_unique_id
    54 schema:value 0401404
    55 rdf:type schema:PropertyValue
    56 N3c6c3a608e2d42e9a21a2e4cc0fb9337 schema:name readcube_id
    57 schema:value 237cfc0003a215a6949c1fb9c522dea9bf644bad56bed99ce884d1313c587602
    58 rdf:type schema:PropertyValue
    59 N41910f30f2f344f5a99c8ad331cfb09b schema:name dimensions_id
    60 schema:value pub.1110708175
    61 rdf:type schema:PropertyValue
    62 N73a57afb2c634f2abe2315038f088b5c schema:issueNumber 4
    63 rdf:type schema:PublicationIssue
    64 Nc6fc9c3f1f0e423085feb750c4ddbeb3 rdf:first sg:person.01327752120.28
    65 rdf:rest rdf:nil
    66 Ncc2bdf0b82ef4cdeb4920ebd16336885 schema:name doi
    67 schema:value 10.1007/s11538-018-00558-w
    68 rdf:type schema:PropertyValue
    69 Nd1344cf04f4b4997a48ab3f807fe009c schema:name pubmed_id
    70 schema:value 30560441
    71 rdf:type schema:PropertyValue
    72 Nf1df536303cf42a0acb3e12fb1a27825 schema:volumeNumber 81
    73 rdf:type schema:PublicationVolume
    74 Nff6ffb917836442b88867999707b32ed schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Mathematical Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Statistics
    81 rdf:type schema:DefinedTerm
    82 sg:grant.7553345 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-018-00558-w
    83 rdf:type schema:MonetaryGrant
    84 sg:journal.1018370 schema:issn 0092-8240
    85 1522-9602
    86 schema:name Bulletin of Mathematical Biology
    87 rdf:type schema:Periodical
    88 sg:person.01327752120.28 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
    89 schema:familyName Bakhtin
    90 schema:givenName Yuri
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-1-4684-0564-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089816325
    94 https://doi.org/10.1007/978-1-4684-0564-4_4
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-642-25847-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045083534
    97 https://doi.org/10.1007/978-3-642-25847-3
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s00023-011-0148-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018348749
    100 https://doi.org/10.1007/s00023-011-0148-6
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00440-010-0264-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000387165
    103 https://doi.org/10.1007/s00440-010-0264-0
    104 rdf:type schema:CreativeWork
    105 https://app.dimensions.ai/details/publication/pub.1045083534 schema:CreativeWork
    106 https://app.dimensions.ai/details/publication/pub.1109496263 schema:CreativeWork
    107 https://doi.org/10.1002/9780470316658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496263
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/cpa.21715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091323650
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.jmp.2012.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042452942
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.spa.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026784286
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.spa.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031622600
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s1473-3099(14)71075-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009179005
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1073/pnas.1413446111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053644787
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1080/14689367.2010.482520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052693718
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1080/17442508408833304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018893985
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1090/qam/1483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091937513
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1090/tran/6574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059351458
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1093/acprof:oso/9780195070019.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098742165
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1093/oxfordjournals.aje.a119397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076914346
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physreve.96.012313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090660983
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1136/oem.6.2.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026403032
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1137/17m1110900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092698533
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1142/s021949371550001x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062995318
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.7554/elife.30212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099904626
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
    144 schema:name Courant Institute of Mathematical Sciences, New York, USA
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...