Adaptation to Stochastic Temporal Variations in Intratumoral Blood Flow: The Warburg Effect as a Bet Hedging Strategy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Curtis A. Gravenmier, Miriam Siddique, Robert A. Gatenby

ABSTRACT

While most cancers promote ingrowth of host blood vessels, the resulting vascular network usually fails to develop a mature organization, resulting in abnormal vascular dynamics with stochastic variations that include slowing, cessation, and even reversal of flow. Thus, substantial spatial and temporal variations in oxygen concentration are commonly observed in most cancers. Cancer cells, like all living systems, are subject to Darwinian dynamics such that their survival and proliferation are dependent on developing optimal phenotypic adaptations to local environmental conditions. Here, we consider the environmental stresses placed on tumors subject to profound, frequent, but stochastic variations in oxygen concentration as a result of temporal variations in blood flow. While vascular fluctuations will undoubtedly affect local concentrations of a wide range of molecules including growth factors (e.g., estrogen), substrate (oxygen, glucose, etc.), and metabolites ([Formula: see text], we focus on the selection forces that result solely from stochastic fluctuations in oxygen concentration. The glucose metabolism of cancer cells has been investigated for decades following observations that malignant cells ferment glucose regardless of oxygen concentration, a condition termed the Warburg effect. In contrast, normal cells cease fermentation under aerobic conditions and this physiological response is termed the Pasteur effect. Fermentation is markedly inefficient compared to cellular respiration in terms of adenosine triphosphate (ATP) production, generating just 2 ATP/glucose, whereas respiration generates 38 ATP/glucose. This inefficiency requires cancer cells to increase glycolytic flux, which subsequently increases acid production and can significantly acidify local tissue. Hence, it initially appears that cancer cells adopt a disadvantageous metabolic phenotype. Indeed, this metabolic "hallmark" of cancer is termed "energy dysregulation." However, if cancers arise through an evolutionary optimization process, any common observed property must confer an adaptive advantage. In the present work, we investigate the hypothesis that aerobic glycolysis represents an adaptation to stochastic variations in oxygen concentration stemming from disordered intratumoral blood flow. Using mathematical models, we demonstrate that the Warburg effect evolves as a conservative metabolic bet hedging strategy in response to stochastic fluctuations of oxygen. Specifically, the Warburg effect sacrifices fitness in physoxia by diverting resources from the more efficient process of respiration, but preemptively adapts cells to hypoxia because fermentation produces ATP anaerobically. An environment with sufficiently stochastic fluctuations of oxygen will select for the bet hedging (Warburg) phenotype since it is modestly successful irrespective of oxygen concentration. More... »

PAGES

954-970

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-017-0261-x

DOI

http://dx.doi.org/10.1007/s11538-017-0261-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085410617

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28508297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regional Blood Flow", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of South Florida", 
          "id": "https://www.grid.ac/institutes/grid.170693.a", 
          "name": [
            "University of South Florida School of Medicine, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gravenmier", 
        "givenName": "Curtis A.", 
        "id": "sg:person.01206053614.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206053614.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of South Florida", 
          "id": "https://www.grid.ac/institutes/grid.170693.a", 
          "name": [
            "University of South Florida School of Medicine, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddique", 
        "givenName": "Miriam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Cancer Biology and Evolution Program, Moffitt Cancer Center, 12902 Magnolia Dr, 33618, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gatenby", 
        "givenName": "Robert A.", 
        "id": "sg:person.01251663701.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1042/bj1100373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002735249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1100373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002735249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002799894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-07-6387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005385067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/250704b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011404185", 
          "https://doi.org/10.1038/250704b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011714494", 
          "https://doi.org/10.1038/ng.110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2009.0500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012024358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0161267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012090728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(89)90138-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013369841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8140(96)01730-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013885411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014755399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0272-4332.2004.00485.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014906142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0272-4332.2004.00485.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014906142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0118261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015632954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0118261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015632954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0709747104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016350654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-11-3881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017611916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1420-9101.2003.00530.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017886262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-15-2962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021913402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0216-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022205596", 
          "https://doi.org/10.1007/s00285-008-0216-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2007.01341.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022462471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025009423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6605912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025463660", 
          "https://doi.org/10.1038/sj.bjc.6605912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0297-177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025563287", 
          "https://doi.org/10.1038/nm0297-177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2007.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029048144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/jcr.1925.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029803445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/359826a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030106977", 
          "https://doi.org/10.1038/359826a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(76)90045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030339738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1113205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031166230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1219747110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031529544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0215(19980302)75:5<780::aid-ijc19>3.0.co;2-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032385895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsfs.2016.0039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033214848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci36843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033330971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035094357", 
          "https://doi.org/10.1038/ncomms10684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036705264", 
          "https://doi.org/10.1038/nrc882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036705264", 
          "https://doi.org/10.1038/nrc882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2009.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038383879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1593/neo.08388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038390664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1593/neo.08388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038390664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039488853", 
          "https://doi.org/10.1038/nrc3261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2009.2023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040239021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0213-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040244228", 
          "https://doi.org/10.1007/s00285-008-0213-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0213-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040244228", 
          "https://doi.org/10.1007/s00285-008-0213-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050127700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0030-1299.2008.16215.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050762169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053327451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053327451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/383618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058674705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/648557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058839519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127493000040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062957867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/0007-1285-52-620-650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064552629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1549460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069537676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074963916", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079953821", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082943821", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1996.271.4.c1172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082991098"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "While most cancers promote ingrowth of host blood vessels, the resulting vascular network usually fails to develop a mature organization, resulting in abnormal vascular dynamics with stochastic variations that include slowing, cessation, and even reversal of flow. Thus, substantial spatial and temporal variations in oxygen concentration are commonly observed in most cancers. Cancer cells, like all living systems, are subject to Darwinian dynamics such that their survival and proliferation are dependent on developing optimal phenotypic adaptations to local environmental conditions. Here, we consider the environmental stresses placed on tumors subject to profound, frequent, but stochastic variations in oxygen concentration as a result of temporal variations in blood flow. While vascular fluctuations will undoubtedly affect local concentrations of a wide range of molecules including growth factors (e.g., estrogen), substrate (oxygen, glucose, etc.), and metabolites ([Formula: see text], we focus on the selection forces that result solely from stochastic fluctuations in oxygen concentration. The glucose metabolism of cancer cells has been investigated for decades following observations that malignant cells ferment glucose regardless of oxygen concentration, a condition termed the Warburg effect. In contrast, normal cells cease fermentation under aerobic conditions and this physiological response is termed the Pasteur effect. Fermentation is markedly inefficient compared to cellular respiration in terms of adenosine triphosphate (ATP) production, generating just 2 ATP/glucose, whereas respiration generates 38 ATP/glucose. This inefficiency requires cancer cells to increase glycolytic flux, which subsequently increases acid production and can significantly acidify local tissue. Hence, it initially appears that cancer cells adopt a disadvantageous metabolic phenotype. Indeed, this metabolic \"hallmark\" of cancer is termed \"energy dysregulation.\" However, if cancers arise through an evolutionary optimization process, any common observed property must confer an adaptive advantage. In the present work, we investigate the hypothesis that aerobic glycolysis represents an adaptation to stochastic variations in oxygen concentration stemming from disordered intratumoral blood flow. Using mathematical models, we demonstrate that the Warburg effect evolves as a conservative metabolic bet hedging strategy in response to stochastic fluctuations of oxygen. Specifically, the Warburg effect sacrifices fitness in physoxia by diverting resources from the more efficient process of respiration, but preemptively adapts cells to hypoxia because fermentation produces ATP anaerobically. An environment with sufficiently stochastic fluctuations of oxygen will select for the bet hedging (Warburg) phenotype since it is modestly successful irrespective of oxygen concentration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11538-017-0261-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2482106", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699085", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "name": "Adaptation to Stochastic Temporal Variations in Intratumoral Blood Flow: The Warburg Effect as a Bet Hedging Strategy", 
    "pagination": "954-970", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-017-0261-x"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "59ba8476aee48e961af4163e5cae832aa738aa2b7114446b7f4b3154622a2875"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085410617"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0401404"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28508297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-017-0261-x", 
      "https://app.dimensions.ai/details/publication/pub.1085410617"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91469_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11538-017-0261-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-017-0261-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-017-0261-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-017-0261-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-017-0261-x'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      88 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-017-0261-x schema:about N0398b85eda8a4feda6234907e8ee0c46
2 N24e0606b1d984030a59b5cffd65118e6
3 N41ec352692ac40c5b198ce74bdd6fa0b
4 N5043e137707e40d3a346bdbc30211a7c
5 N85fede6826c04ed2ab2b6e579b125daa
6 Ne70db06beeeb49ec9c8cc9fc8d522d70
7 Nfc559124cb18482fb3ecd531d61bc80a
8 Nff13153483db4fd3b102621cf5b3a84c
9 Nffb0ddaec1fb47cb9e08d1edcefb301f
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author N38f0a537cf34414893bf857a7c37076e
13 schema:citation sg:pub.10.1007/s00285-008-0213-z
14 sg:pub.10.1007/s00285-008-0216-9
15 sg:pub.10.1038/250704b0
16 sg:pub.10.1038/359826a0
17 sg:pub.10.1038/ncomms10684
18 sg:pub.10.1038/ng.110
19 sg:pub.10.1038/nm0297-177
20 sg:pub.10.1038/nrc3261
21 sg:pub.10.1038/nrc882
22 sg:pub.10.1038/sj.bjc.6605912
23 https://app.dimensions.ai/details/publication/pub.1074963916
24 https://app.dimensions.ai/details/publication/pub.1079953821
25 https://app.dimensions.ai/details/publication/pub.1082943821
26 https://doi.org/10.1002/(sici)1097-0215(19980302)75:5<780::aid-ijc19>3.0.co;2-a
27 https://doi.org/10.1002/ijc.25176
28 https://doi.org/10.1016/0040-5809(76)90045-9
29 https://doi.org/10.1016/0167-8140(96)01730-6
30 https://doi.org/10.1016/0169-5347(89)90138-9
31 https://doi.org/10.1016/j.cell.2011.07.026
32 https://doi.org/10.1016/j.jtbi.2007.09.031
33 https://doi.org/10.1016/j.jtbi.2009.01.034
34 https://doi.org/10.1042/bj1100373
35 https://doi.org/10.1046/j.1420-9101.2003.00530.x
36 https://doi.org/10.1056/nejmoa1113205
37 https://doi.org/10.1073/pnas.0709747104
38 https://doi.org/10.1073/pnas.1219747110
39 https://doi.org/10.1086/285702
40 https://doi.org/10.1086/383618
41 https://doi.org/10.1086/648557
42 https://doi.org/10.1098/rsfs.2016.0039
43 https://doi.org/10.1098/rspb.2009.0500
44 https://doi.org/10.1098/rspb.2009.2023
45 https://doi.org/10.1111/j.0030-1299.2008.16215.x
46 https://doi.org/10.1111/j.0272-4332.2004.00485.x
47 https://doi.org/10.1111/j.1365-2656.2007.01341.x
48 https://doi.org/10.1126/science.1058079
49 https://doi.org/10.1126/science.1170944
50 https://doi.org/10.1142/s0218127493000040
51 https://doi.org/10.1152/ajpcell.1996.271.4.c1172
52 https://doi.org/10.1158/0008-5472.can-07-6387
53 https://doi.org/10.1158/0008-5472.can-11-3881
54 https://doi.org/10.1158/0008-5472.can-15-2962
55 https://doi.org/10.1158/jcr.1925.148
56 https://doi.org/10.1172/jci36843
57 https://doi.org/10.1259/0007-1285-52-620-650
58 https://doi.org/10.1371/journal.pone.0118261
59 https://doi.org/10.1371/journal.pone.0161267
60 https://doi.org/10.1593/neo.08388
61 https://doi.org/10.1890/04-0669
62 https://doi.org/10.2307/1549460
63 schema:datePublished 2018-05
64 schema:datePublishedReg 2018-05-01
65 schema:description While most cancers promote ingrowth of host blood vessels, the resulting vascular network usually fails to develop a mature organization, resulting in abnormal vascular dynamics with stochastic variations that include slowing, cessation, and even reversal of flow. Thus, substantial spatial and temporal variations in oxygen concentration are commonly observed in most cancers. Cancer cells, like all living systems, are subject to Darwinian dynamics such that their survival and proliferation are dependent on developing optimal phenotypic adaptations to local environmental conditions. Here, we consider the environmental stresses placed on tumors subject to profound, frequent, but stochastic variations in oxygen concentration as a result of temporal variations in blood flow. While vascular fluctuations will undoubtedly affect local concentrations of a wide range of molecules including growth factors (e.g., estrogen), substrate (oxygen, glucose, etc.), and metabolites ([Formula: see text], we focus on the selection forces that result solely from stochastic fluctuations in oxygen concentration. The glucose metabolism of cancer cells has been investigated for decades following observations that malignant cells ferment glucose regardless of oxygen concentration, a condition termed the Warburg effect. In contrast, normal cells cease fermentation under aerobic conditions and this physiological response is termed the Pasteur effect. Fermentation is markedly inefficient compared to cellular respiration in terms of adenosine triphosphate (ATP) production, generating just 2 ATP/glucose, whereas respiration generates 38 ATP/glucose. This inefficiency requires cancer cells to increase glycolytic flux, which subsequently increases acid production and can significantly acidify local tissue. Hence, it initially appears that cancer cells adopt a disadvantageous metabolic phenotype. Indeed, this metabolic "hallmark" of cancer is termed "energy dysregulation." However, if cancers arise through an evolutionary optimization process, any common observed property must confer an adaptive advantage. In the present work, we investigate the hypothesis that aerobic glycolysis represents an adaptation to stochastic variations in oxygen concentration stemming from disordered intratumoral blood flow. Using mathematical models, we demonstrate that the Warburg effect evolves as a conservative metabolic bet hedging strategy in response to stochastic fluctuations of oxygen. Specifically, the Warburg effect sacrifices fitness in physoxia by diverting resources from the more efficient process of respiration, but preemptively adapts cells to hypoxia because fermentation produces ATP anaerobically. An environment with sufficiently stochastic fluctuations of oxygen will select for the bet hedging (Warburg) phenotype since it is modestly successful irrespective of oxygen concentration.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree false
69 schema:isPartOf N0512db818ef443d986ec476e9a48be12
70 N81fe9820a29349669584d37753d44dee
71 sg:journal.1018370
72 schema:name Adaptation to Stochastic Temporal Variations in Intratumoral Blood Flow: The Warburg Effect as a Bet Hedging Strategy
73 schema:pagination 954-970
74 schema:productId N4043284162ca4ca6b41e921170a316d3
75 N68ae9fdd5f0946348fc5a9485c2344d8
76 Naf5454eadb7b4493a487efbad436a557
77 Nbee245b42c204cdfbaad73888ac68e47
78 Nc77c3e3cba084bb5bbdfdeb18eb19868
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085410617
80 https://doi.org/10.1007/s11538-017-0261-x
81 schema:sdDatePublished 2019-04-15T09:04
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N904ed62c1f9e4530b197998020144c8e
84 schema:url https://link.springer.com/10.1007%2Fs11538-017-0261-x
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0398b85eda8a4feda6234907e8ee0c46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Models, Biological
90 rdf:type schema:DefinedTerm
91 N0512db818ef443d986ec476e9a48be12 schema:issueNumber 5
92 rdf:type schema:PublicationIssue
93 N24e0606b1d984030a59b5cffd65118e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Mathematical Concepts
95 rdf:type schema:DefinedTerm
96 N38f0a537cf34414893bf857a7c37076e rdf:first sg:person.01206053614.45
97 rdf:rest Nd03af70ac4a34bc2bbffef10b1e83924
98 N3ab11c978f754aec81e479b7bcca59f3 rdf:first sg:person.01251663701.28
99 rdf:rest rdf:nil
100 N4043284162ca4ca6b41e921170a316d3 schema:name readcube_id
101 schema:value 59ba8476aee48e961af4163e5cae832aa738aa2b7114446b7f4b3154622a2875
102 rdf:type schema:PropertyValue
103 N41ec352692ac40c5b198ce74bdd6fa0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N5043e137707e40d3a346bdbc30211a7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Neoplasms
108 rdf:type schema:DefinedTerm
109 N68ae9fdd5f0946348fc5a9485c2344d8 schema:name pubmed_id
110 schema:value 28508297
111 rdf:type schema:PropertyValue
112 N81fe9820a29349669584d37753d44dee schema:volumeNumber 80
113 rdf:type schema:PublicationVolume
114 N85fede6826c04ed2ab2b6e579b125daa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Fermentation
116 rdf:type schema:DefinedTerm
117 N904ed62c1f9e4530b197998020144c8e schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Naf5454eadb7b4493a487efbad436a557 schema:name nlm_unique_id
120 schema:value 0401404
121 rdf:type schema:PropertyValue
122 Nbee245b42c204cdfbaad73888ac68e47 schema:name doi
123 schema:value 10.1007/s11538-017-0261-x
124 rdf:type schema:PropertyValue
125 Nc77c3e3cba084bb5bbdfdeb18eb19868 schema:name dimensions_id
126 schema:value pub.1085410617
127 rdf:type schema:PropertyValue
128 Nd03af70ac4a34bc2bbffef10b1e83924 rdf:first Nf26270db46af4962bbc9ffd0cbe85a62
129 rdf:rest N3ab11c978f754aec81e479b7bcca59f3
130 Ne70db06beeeb49ec9c8cc9fc8d522d70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Stochastic Processes
132 rdf:type schema:DefinedTerm
133 Nf26270db46af4962bbc9ffd0cbe85a62 schema:affiliation https://www.grid.ac/institutes/grid.170693.a
134 schema:familyName Siddique
135 schema:givenName Miriam
136 rdf:type schema:Person
137 Nfc559124cb18482fb3ecd531d61bc80a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Glucose
139 rdf:type schema:DefinedTerm
140 Nff13153483db4fd3b102621cf5b3a84c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Oxygen
142 rdf:type schema:DefinedTerm
143 Nffb0ddaec1fb47cb9e08d1edcefb301f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Regional Blood Flow
145 rdf:type schema:DefinedTerm
146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biological Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biochemistry and Cell Biology
151 rdf:type schema:DefinedTerm
152 sg:grant.2482106 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-017-0261-x
153 rdf:type schema:MonetaryGrant
154 sg:grant.2699085 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-017-0261-x
155 rdf:type schema:MonetaryGrant
156 sg:journal.1018370 schema:issn 0092-8240
157 1522-9602
158 schema:name Bulletin of Mathematical Biology
159 rdf:type schema:Periodical
160 sg:person.01206053614.45 schema:affiliation https://www.grid.ac/institutes/grid.170693.a
161 schema:familyName Gravenmier
162 schema:givenName Curtis A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206053614.45
164 rdf:type schema:Person
165 sg:person.01251663701.28 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
166 schema:familyName Gatenby
167 schema:givenName Robert A.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28
169 rdf:type schema:Person
170 sg:pub.10.1007/s00285-008-0213-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040244228
171 https://doi.org/10.1007/s00285-008-0213-z
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s00285-008-0216-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022205596
174 https://doi.org/10.1007/s00285-008-0216-9
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/250704b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011404185
177 https://doi.org/10.1038/250704b0
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/359826a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030106977
180 https://doi.org/10.1038/359826a0
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ncomms10684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035094357
183 https://doi.org/10.1038/ncomms10684
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011714494
186 https://doi.org/10.1038/ng.110
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nm0297-177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025563287
189 https://doi.org/10.1038/nm0297-177
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrc3261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039488853
192 https://doi.org/10.1038/nrc3261
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrc882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036705264
195 https://doi.org/10.1038/nrc882
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/sj.bjc.6605912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025463660
198 https://doi.org/10.1038/sj.bjc.6605912
199 rdf:type schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1074963916 schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1079953821 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1082943821 schema:CreativeWork
203 https://doi.org/10.1002/(sici)1097-0215(19980302)75:5<780::aid-ijc19>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385895
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/ijc.25176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014755399
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/0040-5809(76)90045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030339738
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/0167-8140(96)01730-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013885411
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/0169-5347(89)90138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013369841
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.cell.2011.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053327451
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.jtbi.2007.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029048144
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.jtbi.2009.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038383879
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1042/bj1100373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735249
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1046/j.1420-9101.2003.00530.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017886262
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1056/nejmoa1113205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031166230
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.0709747104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016350654
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1073/pnas.1219747110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031529544
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1086/285702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595825
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1086/383618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058674705
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1086/648557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058839519
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1098/rsfs.2016.0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033214848
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1098/rspb.2009.0500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012024358
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1098/rspb.2009.2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040239021
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1111/j.0030-1299.2008.16215.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050762169
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1111/j.0272-4332.2004.00485.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014906142
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1111/j.1365-2656.2007.01341.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022462471
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1126/science.1058079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002799894
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1126/science.1170944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025009423
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1142/s0218127493000040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062957867
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1152/ajpcell.1996.271.4.c1172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082991098
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1158/0008-5472.can-07-6387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005385067
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1158/0008-5472.can-11-3881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017611916
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1158/0008-5472.can-15-2962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021913402
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1158/jcr.1925.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029803445
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1172/jci36843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033330971
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1259/0007-1285-52-620-650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064552629
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1371/journal.pone.0118261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015632954
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1371/journal.pone.0161267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012090728
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1593/neo.08388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390664
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1890/04-0669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050127700
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2307/1549460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069537676
276 rdf:type schema:CreativeWork
277 https://www.grid.ac/institutes/grid.170693.a schema:alternateName University of South Florida
278 schema:name University of South Florida School of Medicine, Tampa, FL, USA
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.468198.a schema:alternateName Moffitt Cancer Center
281 schema:name Cancer Biology and Evolution Program, Moffitt Cancer Center, 12902 Magnolia Dr, 33618, Tampa, FL, USA
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...