A Note on the Derivation of Epidemic Final Sizes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Joel C. Miller

ABSTRACT

Final size relations are known for many epidemic models. The derivations are often tedious and difficult, involving indirect methods to solve a system of integro-differential equations. Often when the details of the disease or population change, the final size relation does not. An alternate approach to deriving final sizes has been suggested. This approach directly considers the underlying stochastic process of the epidemic rather than the approximating deterministic equations and gives insight into why the relations hold. It has not been widely used. We suspect that this is because it appears to be less rigorous. In this article, we investigate this approach more fully and show that under very weak assumptions (which are satisfied in all conditions we are aware of for which final size relations exist) it can be made rigorous. In particular, the assumptions must hold whenever integro-differential equations exist, but they may also hold in cases without such equations. Thus, the use of integro-differential equations to find a final size relation is unnecessary and a simpler, more general method can be applied. More... »

PAGES

2125-2141

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-012-9749-6

DOI

http://dx.doi.org/10.1007/s11538-012-9749-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048290556

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22829179


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basic Reproduction Number", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Communicable Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Depts of Mathematics and Biology, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Joel C.", 
        "id": "sg:person.01113502515.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113502515.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11538-005-9047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996991", 
          "https://doi.org/10.1007/s11538-005-9047-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-005-9047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996991", 
          "https://doi.org/10.1007/s11538-005-9047-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00012580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012231554", 
          "https://doi.org/10.1007/pl00012580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-002-0186-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012380364", 
          "https://doi.org/10.1007/s00285-002-0186-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2011.0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013768186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-010-9623-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015308536", 
          "https://doi.org/10.1007/s11538-010-9623-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-011-0460-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022220937", 
          "https://doi.org/10.1007/s00285-011-0460-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027433055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-006-9168-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035703608", 
          "https://doi.org/10.1007/s10955-006-9168-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188921", 
          "https://doi.org/10.1007/bf00178324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1927.0118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047710630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.3240060204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051332521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/229693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058549191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1143936140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1308662482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/jap/1214950363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064442293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3215114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070229244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/mbe.2007.4.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071741418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/mbe.2008.5.681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071741493"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "Final size relations are known for many epidemic models. The derivations are often tedious and difficult, involving indirect methods to solve a system of integro-differential equations. Often when the details of the disease or population change, the final size relation does not. An alternate approach to deriving final sizes has been suggested. This approach directly considers the underlying stochastic process of the epidemic rather than the approximating deterministic equations and gives insight into why the relations hold. It has not been widely used. We suspect that this is because it appears to be less rigorous. In this article, we investigate this approach more fully and show that under very weak assumptions (which are satisfied in all conditions we are aware of for which final size relations exist) it can be made rigorous. In particular, the assumptions must hold whenever integro-differential equations exist, but they may also hold in cases without such equations. Thus, the use of integro-differential equations to find a final size relation is unnecessary and a simpler, more general method can be applied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11538-012-9749-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699229", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "name": "A Note on the Derivation of Epidemic Final Sizes", 
    "pagination": "2125-2141", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e60cc649182ce1094eab72810a6a7390a879891977c8d62e040520b58bff3d73"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22829179"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0401404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-012-9749-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048290556"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-012-9749-6", 
      "https://app.dimensions.ai/details/publication/pub.1048290556"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11538-012-9749-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-012-9749-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-012-9749-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-012-9749-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-012-9749-6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      56 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-012-9749-6 schema:about N335a395452464a54b5317d9c8d4b9716
2 N433033302cd84a36aa14e0e534ffa223
3 N63a6a2fb86934289b84038f93f1e4367
4 N866266648ab84b7184a7a9640e35f83f
5 Na8fcb937ba954cb9abbefd0c38609daa
6 Nc2adeeaddaeb462495fadc0c74f26c6e
7 anzsrc-for:01
8 anzsrc-for:0102
9 schema:author Nd025b85b8fb14425b518606f4d408ff1
10 schema:citation sg:pub.10.1007/bf00178324
11 sg:pub.10.1007/pl00012580
12 sg:pub.10.1007/s00285-002-0186-2
13 sg:pub.10.1007/s00285-011-0460-2
14 sg:pub.10.1007/s10955-006-9168-x
15 sg:pub.10.1007/s11538-005-9047-7
16 sg:pub.10.1007/s11538-010-9623-3
17 https://doi.org/10.1002/rsa.20168
18 https://doi.org/10.1002/rsa.3240060204
19 https://doi.org/10.1086/229693
20 https://doi.org/10.1098/rsif.2011.0403
21 https://doi.org/10.1098/rspa.1927.0118
22 https://doi.org/10.1103/physreve.76.010101
23 https://doi.org/10.1103/physreve.76.036113
24 https://doi.org/10.1137/s003614450342480
25 https://doi.org/10.1239/aap/1143936140
26 https://doi.org/10.1239/aap/1308662482
27 https://doi.org/10.1239/jap/1214950363
28 https://doi.org/10.2307/3215114
29 https://doi.org/10.3934/mbe.2007.4.159
30 https://doi.org/10.3934/mbe.2008.5.681
31 schema:datePublished 2012-09
32 schema:datePublishedReg 2012-09-01
33 schema:description Final size relations are known for many epidemic models. The derivations are often tedious and difficult, involving indirect methods to solve a system of integro-differential equations. Often when the details of the disease or population change, the final size relation does not. An alternate approach to deriving final sizes has been suggested. This approach directly considers the underlying stochastic process of the epidemic rather than the approximating deterministic equations and gives insight into why the relations hold. It has not been widely used. We suspect that this is because it appears to be less rigorous. In this article, we investigate this approach more fully and show that under very weak assumptions (which are satisfied in all conditions we are aware of for which final size relations exist) it can be made rigorous. In particular, the assumptions must hold whenever integro-differential equations exist, but they may also hold in cases without such equations. Thus, the use of integro-differential equations to find a final size relation is unnecessary and a simpler, more general method can be applied.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N5e549b7897154860855a5435478da2a8
38 Na50ac87458c54ef09ec874b8a26db34c
39 sg:journal.1018370
40 schema:name A Note on the Derivation of Epidemic Final Sizes
41 schema:pagination 2125-2141
42 schema:productId N2859f516160a41fbbd4c7f54933b214e
43 N29be731b03f648f4bd1701c95e2df477
44 N465d18b381ae44fe8ee8cd931c5a70d2
45 N7ef6d41e9b574d25af178dccf9150e07
46 Nfe16c878f0284d1eb0b288b2fe3db028
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048290556
48 https://doi.org/10.1007/s11538-012-9749-6
49 schema:sdDatePublished 2019-04-10T21:41
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nc98ad07e181143ec8c1cbb4381596ecf
52 schema:url http://link.springer.com/10.1007%2Fs11538-012-9749-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2859f516160a41fbbd4c7f54933b214e schema:name dimensions_id
57 schema:value pub.1048290556
58 rdf:type schema:PropertyValue
59 N29be731b03f648f4bd1701c95e2df477 schema:name readcube_id
60 schema:value e60cc649182ce1094eab72810a6a7390a879891977c8d62e040520b58bff3d73
61 rdf:type schema:PropertyValue
62 N335a395452464a54b5317d9c8d4b9716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Basic Reproduction Number
64 rdf:type schema:DefinedTerm
65 N433033302cd84a36aa14e0e534ffa223 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Communicable Diseases
67 rdf:type schema:DefinedTerm
68 N465d18b381ae44fe8ee8cd931c5a70d2 schema:name nlm_unique_id
69 schema:value 0401404
70 rdf:type schema:PropertyValue
71 N5e549b7897154860855a5435478da2a8 schema:issueNumber 9
72 rdf:type schema:PublicationIssue
73 N63a6a2fb86934289b84038f93f1e4367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N7ef6d41e9b574d25af178dccf9150e07 schema:name doi
77 schema:value 10.1007/s11538-012-9749-6
78 rdf:type schema:PropertyValue
79 N866266648ab84b7184a7a9640e35f83f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Epidemics
81 rdf:type schema:DefinedTerm
82 Na50ac87458c54ef09ec874b8a26db34c schema:volumeNumber 74
83 rdf:type schema:PublicationVolume
84 Na8fcb937ba954cb9abbefd0c38609daa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Stochastic Processes
86 rdf:type schema:DefinedTerm
87 Nc2adeeaddaeb462495fadc0c74f26c6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Models, Biological
89 rdf:type schema:DefinedTerm
90 Nc98ad07e181143ec8c1cbb4381596ecf schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nd025b85b8fb14425b518606f4d408ff1 rdf:first sg:person.01113502515.98
93 rdf:rest rdf:nil
94 Nfe16c878f0284d1eb0b288b2fe3db028 schema:name pubmed_id
95 schema:value 22829179
96 rdf:type schema:PropertyValue
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
101 schema:name Applied Mathematics
102 rdf:type schema:DefinedTerm
103 sg:grant.2699229 http://pending.schema.org/fundedItem sg:pub.10.1007/s11538-012-9749-6
104 rdf:type schema:MonetaryGrant
105 sg:journal.1018370 schema:issn 0092-8240
106 1522-9602
107 schema:name Bulletin of Mathematical Biology
108 rdf:type schema:Periodical
109 sg:person.01113502515.98 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
110 schema:familyName Miller
111 schema:givenName Joel C.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113502515.98
113 rdf:type schema:Person
114 sg:pub.10.1007/bf00178324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039188921
115 https://doi.org/10.1007/bf00178324
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/pl00012580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012231554
118 https://doi.org/10.1007/pl00012580
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00285-002-0186-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012380364
121 https://doi.org/10.1007/s00285-002-0186-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00285-011-0460-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022220937
124 https://doi.org/10.1007/s00285-011-0460-2
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10955-006-9168-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035703608
127 https://doi.org/10.1007/s10955-006-9168-x
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11538-005-9047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005996991
130 https://doi.org/10.1007/s11538-005-9047-7
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11538-010-9623-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015308536
133 https://doi.org/10.1007/s11538-010-9623-3
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/rsa.20168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027433055
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/rsa.3240060204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332521
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1086/229693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058549191
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1098/rsif.2011.0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013768186
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1098/rspa.1927.0118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047710630
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreve.76.010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034165685
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreve.76.036113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040009627
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1239/aap/1143936140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440704
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1239/aap/1308662482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440998
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1239/jap/1214950363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064442293
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2307/3215114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070229244
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3934/mbe.2007.4.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071741418
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3934/mbe.2008.5.681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071741493
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
164 schema:name Depts of Mathematics and Biology, The Pennsylvania State University, 16802, University Park, PA, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...