Development of a Quantitative Model of Pregnane X Receptor (PXR) Mediated Xenobiotic Metabolizing Enzyme Induction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-10

AUTHORS

Nicholas S. Luke, Michael J. DeVito, Imran Shah, Hisham A. El-Masri

ABSTRACT

The pregnane X receptor plays an integral role in the regulation of hepatic metabolism. It has been shown to regulate CYP3A4, which is the most abundant cytochrome P450 in the human liver. With its large and flexible ligand-binding domain, PXR can be activated by an enormous range of relatively small, hydrophobic, exogenous compounds. Upon activation, PXR partners with the retinoid X receptor (RXR) to form a heterodimer. The newly formed heterodimer binds to an appropriate DNA response element, causing increased transcription. This leads to an induction in the level of CYP3A4. These mechanistic steps are included into a biologically-based mathematical model. The quantitative model predicts fold level inductions of CYP3A4 mRNA and protein in response to PXR activation. Model parameter values have been taken from literature when appropriate. Unknown parameter values are estimated by optimizing the model results to published in vivo and in vitro data sets. A sensitivity analysis is performed to evaluate the model structure and identify future data needs which would be critical to revising the model. More... »

PAGES

1799-1819

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-010-9508-5

DOI

http://dx.doi.org/10.1007/s11538-010-9508-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017925330

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20151218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome P-450 CYP3A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzyme Induction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnane X Receptor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Steroid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Xenobiotics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North Carolina Agricultural and Technical State University", 
          "id": "https://www.grid.ac/institutes/grid.261037.1", 
          "name": [
            "Department of Mathematics, North Carolina Agricultural and Technical State University, 27411, Greensboro, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luke", 
        "givenName": "Nicholas S.", 
        "id": "sg:person.0640313066.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640313066.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "National Toxicology Program, National Institute for Environmental Health Sciences, 27709, RTP, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeVito", 
        "givenName": "Michael J.", 
        "id": "sg:person.0772673506.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772673506.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Center for Computational Toxicology, ORD, U.S. EPA, 27711, RTP, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "Imran", 
        "id": "sg:person.0756413731.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756413731.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Integrated Systems Toxicology Division, NHEERL, ORD, U.S. EPA, 27711, RTP, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Masri", 
        "givenName": "Hisham A.", 
        "id": "sg:person.01300066107.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300066107.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cbi.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000549134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0955-0674(03)00017-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002162918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfg152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002927045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00498250600861728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007226621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci3703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008581615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2125.2003.01881.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009869968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.105.006874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010639691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/pr.55.4.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014632336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2003.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015013441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/taap.1993.1096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015828763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfm297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015856721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m001215200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018688024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0091270007299930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020311674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.22129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020579530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0300-483x(01)00363-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020601544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.17.9147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025449861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2001.2293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026683860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1060762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033500451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.107.018341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034712332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.32.4.468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.reprotox.2008.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037080295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2005.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037405024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfn255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038291421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00498250600861827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041540864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01733779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042174608", 
          "https://doi.org/10.1007/bf01733779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01733779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042174608", 
          "https://doi.org/10.1007/bf01733779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/074823379701300401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043959433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/074823379701300401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043959433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01059398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047079501", 
          "https://doi.org/10.1007/bf01059398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci21867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048472961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.46.3.900-903.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049453584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi0268753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055196426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi0268753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055196426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/153623103322452404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059215057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2004.833688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.01109421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389200054633844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069175512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074515776", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.56.6.1329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074553466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.14.2.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074584715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.7.12.8375615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082780609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "The pregnane X receptor plays an integral role in the regulation of hepatic metabolism. It has been shown to regulate CYP3A4, which is the most abundant cytochrome P450 in the human liver. With its large and flexible ligand-binding domain, PXR can be activated by an enormous range of relatively small, hydrophobic, exogenous compounds. Upon activation, PXR partners with the retinoid X receptor (RXR) to form a heterodimer. The newly formed heterodimer binds to an appropriate DNA response element, causing increased transcription. This leads to an induction in the level of CYP3A4. These mechanistic steps are included into a biologically-based mathematical model. The quantitative model predicts fold level inductions of CYP3A4 mRNA and protein in response to PXR activation. Model parameter values have been taken from literature when appropriate. Unknown parameter values are estimated by optimizing the model results to published in vivo and in vitro data sets. A sensitivity analysis is performed to evaluate the model structure and identify future data needs which would be critical to revising the model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11538-010-9508-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "name": "Development of a Quantitative Model of Pregnane X Receptor (PXR) Mediated Xenobiotic Metabolizing Enzyme Induction", 
    "pagination": "1799-1819", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "556843e208456b09e9dc88c1e9d94c165da5a792a8d30cf8e235d2b340dc0cab"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20151218"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0401404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-010-9508-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017925330"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-010-9508-5", 
      "https://app.dimensions.ai/details/publication/pub.1017925330"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11538-010-9508-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-010-9508-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-010-9508-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-010-9508-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-010-9508-5'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      77 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-010-9508-5 schema:about N171d3bc2c3334c149d2c2584f9853dbb
2 N2f5b5b5395494a4eb9133f62274aa6ae
3 N4e35b773c96a4d6694b8c91b75d811f4
4 N87fb154f7c9b43d884b2fff8432890f0
5 N89b9465d3ae34ad79632464dd5ad08c9
6 N8bea56eeb1504bc4906de67a2bdef391
7 Ncc5d989b567646c4a700191e3f7f6ccd
8 Ne0152b1498be40b3b109019ff0949535
9 Ne0a7a03e7b0c42d296a4b550424204de
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author N0a64831119c7444d8827d6eb8f87c45c
13 schema:citation sg:pub.10.1007/bf01059398
14 sg:pub.10.1007/bf01733779
15 https://app.dimensions.ai/details/publication/pub.1074515776
16 https://doi.org/10.1002/hep.22129
17 https://doi.org/10.1006/jtbi.2001.2293
18 https://doi.org/10.1006/taap.1993.1096
19 https://doi.org/10.1016/j.cbi.2005.06.003
20 https://doi.org/10.1016/j.cell.2005.04.020
21 https://doi.org/10.1016/j.jtbi.2003.08.008
22 https://doi.org/10.1016/j.reprotox.2008.05.027
23 https://doi.org/10.1016/s0300-483x(01)00363-8
24 https://doi.org/10.1016/s0955-0674(03)00017-6
25 https://doi.org/10.1021/bi0268753
26 https://doi.org/10.1046/j.1365-2125.2003.01881.x
27 https://doi.org/10.1073/pnas.94.17.9147
28 https://doi.org/10.1074/jbc.m001215200
29 https://doi.org/10.1080/00498250600861728
30 https://doi.org/10.1080/00498250600861827
31 https://doi.org/10.1089/153623103322452404
32 https://doi.org/10.1093/toxsci/kfg152
33 https://doi.org/10.1093/toxsci/kfm297
34 https://doi.org/10.1093/toxsci/kfn255
35 https://doi.org/10.1096/fasebj.14.2.242
36 https://doi.org/10.1096/fasebj.7.12.8375615
37 https://doi.org/10.1109/tnb.2004.833688
38 https://doi.org/10.1124/dmd.105.006874
39 https://doi.org/10.1124/dmd.107.018341
40 https://doi.org/10.1124/dmd.32.4.468
41 https://doi.org/10.1124/mol.56.6.1329
42 https://doi.org/10.1124/pr.55.4.2
43 https://doi.org/10.1126/science.1060762
44 https://doi.org/10.1128/aac.46.3.900-903.2002
45 https://doi.org/10.1172/jci21867
46 https://doi.org/10.1172/jci3703
47 https://doi.org/10.1177/0091270007299930
48 https://doi.org/10.1177/074823379701300401
49 https://doi.org/10.1289/ehp.01109421
50 https://doi.org/10.1371/journal.pcbi.0030024
51 https://doi.org/10.2174/1389200054633844
52 schema:datePublished 2010-10
53 schema:datePublishedReg 2010-10-01
54 schema:description The pregnane X receptor plays an integral role in the regulation of hepatic metabolism. It has been shown to regulate CYP3A4, which is the most abundant cytochrome P450 in the human liver. With its large and flexible ligand-binding domain, PXR can be activated by an enormous range of relatively small, hydrophobic, exogenous compounds. Upon activation, PXR partners with the retinoid X receptor (RXR) to form a heterodimer. The newly formed heterodimer binds to an appropriate DNA response element, causing increased transcription. This leads to an induction in the level of CYP3A4. These mechanistic steps are included into a biologically-based mathematical model. The quantitative model predicts fold level inductions of CYP3A4 mRNA and protein in response to PXR activation. Model parameter values have been taken from literature when appropriate. Unknown parameter values are estimated by optimizing the model results to published in vivo and in vitro data sets. A sensitivity analysis is performed to evaluate the model structure and identify future data needs which would be critical to revising the model.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N12c446fab8154fa68a927f429e28fa98
59 N4d07fa6e64844cc38f907e934d6b057a
60 sg:journal.1018370
61 schema:name Development of a Quantitative Model of Pregnane X Receptor (PXR) Mediated Xenobiotic Metabolizing Enzyme Induction
62 schema:pagination 1799-1819
63 schema:productId N4838112ad94b41b59649f8b21d20e755
64 N84a6015886b84271b73d34aac7003883
65 N86b1183cdc354affbc393dce69240636
66 N9e16bc53a09a41928f2b8fcd3fa3c44e
67 Neaacf4d9dfc04b2eae0767a56b3cd096
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017925330
69 https://doi.org/10.1007/s11538-010-9508-5
70 schema:sdDatePublished 2019-04-11T10:00
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N8aa21e875fda490bada4db2b84eb2d1d
73 schema:url http://link.springer.com/10.1007%2Fs11538-010-9508-5
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0a64831119c7444d8827d6eb8f87c45c rdf:first sg:person.0640313066.69
78 rdf:rest N3c6629b195dd48308d3c3b63f1193de6
79 N12c446fab8154fa68a927f429e28fa98 schema:issueNumber 7
80 rdf:type schema:PublicationIssue
81 N171d3bc2c3334c149d2c2584f9853dbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Models, Biological
83 rdf:type schema:DefinedTerm
84 N2f5b5b5395494a4eb9133f62274aa6ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Xenobiotics
86 rdf:type schema:DefinedTerm
87 N3c6629b195dd48308d3c3b63f1193de6 rdf:first sg:person.0772673506.85
88 rdf:rest N727b32b991fd4717809cc51b292de03d
89 N3e6c2aa0facd47fe943c6bc6c409ab33 schema:name National Center for Computational Toxicology, ORD, U.S. EPA, 27711, RTP, NC, USA
90 rdf:type schema:Organization
91 N4838112ad94b41b59649f8b21d20e755 schema:name pubmed_id
92 schema:value 20151218
93 rdf:type schema:PropertyValue
94 N4d07fa6e64844cc38f907e934d6b057a schema:volumeNumber 72
95 rdf:type schema:PublicationVolume
96 N4e35b773c96a4d6694b8c91b75d811f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cytochrome P-450 CYP3A
98 rdf:type schema:DefinedTerm
99 N727b32b991fd4717809cc51b292de03d rdf:first sg:person.0756413731.45
100 rdf:rest Ne3712eb88b7448ab9f1c764c2a7fc495
101 N84a6015886b84271b73d34aac7003883 schema:name doi
102 schema:value 10.1007/s11538-010-9508-5
103 rdf:type schema:PropertyValue
104 N86b1183cdc354affbc393dce69240636 schema:name nlm_unique_id
105 schema:value 0401404
106 rdf:type schema:PropertyValue
107 N87fb154f7c9b43d884b2fff8432890f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N89b9465d3ae34ad79632464dd5ad08c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Computer Simulation
112 rdf:type schema:DefinedTerm
113 N8aa21e875fda490bada4db2b84eb2d1d schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N8bea56eeb1504bc4906de67a2bdef391 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Liver
117 rdf:type schema:DefinedTerm
118 N9e16bc53a09a41928f2b8fcd3fa3c44e schema:name readcube_id
119 schema:value 556843e208456b09e9dc88c1e9d94c165da5a792a8d30cf8e235d2b340dc0cab
120 rdf:type schema:PropertyValue
121 Ncc5d989b567646c4a700191e3f7f6ccd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Pregnane X Receptor
123 rdf:type schema:DefinedTerm
124 Ne0152b1498be40b3b109019ff0949535 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Enzyme Induction
126 rdf:type schema:DefinedTerm
127 Ne0a7a03e7b0c42d296a4b550424204de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Receptors, Steroid
129 rdf:type schema:DefinedTerm
130 Ne3712eb88b7448ab9f1c764c2a7fc495 rdf:first sg:person.01300066107.66
131 rdf:rest rdf:nil
132 Neaacf4d9dfc04b2eae0767a56b3cd096 schema:name dimensions_id
133 schema:value pub.1017925330
134 rdf:type schema:PropertyValue
135 Nf6833542b5ee45508baceb85a09150fa schema:name Integrated Systems Toxicology Division, NHEERL, ORD, U.S. EPA, 27711, RTP, NC, USA
136 rdf:type schema:Organization
137 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
138 schema:name Biological Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
141 schema:name Biochemistry and Cell Biology
142 rdf:type schema:DefinedTerm
143 sg:journal.1018370 schema:issn 0092-8240
144 1522-9602
145 schema:name Bulletin of Mathematical Biology
146 rdf:type schema:Periodical
147 sg:person.01300066107.66 schema:affiliation Nf6833542b5ee45508baceb85a09150fa
148 schema:familyName El-Masri
149 schema:givenName Hisham A.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300066107.66
151 rdf:type schema:Person
152 sg:person.0640313066.69 schema:affiliation https://www.grid.ac/institutes/grid.261037.1
153 schema:familyName Luke
154 schema:givenName Nicholas S.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640313066.69
156 rdf:type schema:Person
157 sg:person.0756413731.45 schema:affiliation N3e6c2aa0facd47fe943c6bc6c409ab33
158 schema:familyName Shah
159 schema:givenName Imran
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756413731.45
161 rdf:type schema:Person
162 sg:person.0772673506.85 schema:affiliation https://www.grid.ac/institutes/grid.280664.e
163 schema:familyName DeVito
164 schema:givenName Michael J.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772673506.85
166 rdf:type schema:Person
167 sg:pub.10.1007/bf01059398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047079501
168 https://doi.org/10.1007/bf01059398
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf01733779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042174608
171 https://doi.org/10.1007/bf01733779
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1074515776 schema:CreativeWork
174 https://doi.org/10.1002/hep.22129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579530
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1006/jtbi.2001.2293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026683860
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1006/taap.1993.1096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015828763
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.cbi.2005.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000549134
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.cell.2005.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037405024
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jtbi.2003.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015013441
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.reprotox.2008.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037080295
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0300-483x(01)00363-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020601544
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0955-0674(03)00017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002162918
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/bi0268753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055196426
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1046/j.1365-2125.2003.01881.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009869968
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.94.17.9147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025449861
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1074/jbc.m001215200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018688024
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/00498250600861728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007226621
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/00498250600861827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041540864
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1089/153623103322452404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059215057
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/toxsci/kfg152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002927045
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/toxsci/kfm297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015856721
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/toxsci/kfn255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038291421
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1096/fasebj.14.2.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074584715
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1096/fasebj.7.12.8375615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082780609
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/tnb.2004.833688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713643
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1124/dmd.105.006874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010639691
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1124/dmd.107.018341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034712332
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1124/dmd.32.4.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036564475
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1124/mol.56.6.1329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074553466
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1124/pr.55.4.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014632336
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.1060762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033500451
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1128/aac.46.3.900-903.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049453584
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1172/jci21867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048472961
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1172/jci3703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008581615
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1177/0091270007299930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020311674
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1177/074823379701300401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043959433
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1289/ehp.01109421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737339
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1371/journal.pcbi.0030024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973568
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2174/1389200054633844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069175512
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.261037.1 schema:alternateName North Carolina Agricultural and Technical State University
247 schema:name Department of Mathematics, North Carolina Agricultural and Technical State University, 27411, Greensboro, NC, USA
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.280664.e schema:alternateName National Institute of Environmental Health Sciences
250 schema:name National Toxicology Program, National Institute for Environmental Health Sciences, 27709, RTP, NC, USA
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...