Response of Tumor Spheroids to Radiation: Modeling and Parameter Estimation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11-14

AUTHORS

A. Bertuzzi, C. Bruni, A. Fasano, A. Gandolfi, F. Papa, C. Sinisgalli

ABSTRACT

We propose a spatially distributed continuous model for the spheroid response to radiation, in which the oxygen distribution is represented by means of a diffusion-consumption equation and the radiosensitivity parameters depend on the oxygen concentration. The induction of lethally damaged cells by a pulse of radiation, their death, and the degradation of dead cells are included. The compartments of lethally damaged cells and of dead cells are subdivided into different subcompartments to simulate the delays that occur in cell death and cell degradation, with a gain in model flexibility. It is shown that, for a single irradiation and under the hypothesis of a sufficiently small spheroid radius, the model can be reformulated as a linear stationary ordinary differential equation system. For this system, the parameter identifiability has been investigated, showing that the set of unknown parameters can be univocally identified by exploiting the response of the model to at least two different radiation doses. Experimental data from spheroids originated from different cell lines are used to identify the unknown parameters and to test the predictive capability of the model with satisfactory results. More... »

PAGES

1069-1091

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-009-9482-y

DOI

http://dx.doi.org/10.1007/s11538-009-9482-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009124792

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19915922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apoptosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melanoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroblastoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Tolerance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spheroids, Cellular", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertuzzi", 
        "givenName": "A.", 
        "id": "sg:person.01321457652.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruni", 
        "givenName": "C.", 
        "id": "sg:person.016246316767.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016246316767.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica \u201cU. Dini\u201d, Universit\u00e0 di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Dipartimento di Matematica \u201cU. Dini\u201d, Universit\u00e0 di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fasano", 
        "givenName": "A.", 
        "id": "sg:person.01261515206.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandolfi", 
        "givenName": "A.", 
        "id": "sg:person.0623363352.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papa", 
        "givenName": "F.", 
        "id": "sg:person.01036254641.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036254641.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinisgalli", 
        "givenName": "C.", 
        "id": "sg:person.01261114530.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11538-007-9287-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046113038", 
          "https://doi.org/10.1007/s11538-007-9287-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00391431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041804716", 
          "https://doi.org/10.1007/bf00391431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.bulm.2003.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022804223", 
          "https://doi.org/10.1016/j.bulm.2003.11.002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-8-201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008550126", 
          "https://doi.org/10.1186/1471-2407-8-201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(03)00054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033177391", 
          "https://doi.org/10.1016/s0092-8240(03)00054-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11-14", 
    "datePublishedReg": "2009-11-14", 
    "description": "We propose a spatially distributed continuous model for the spheroid response to radiation, in which the oxygen distribution is represented by means of a diffusion-consumption equation and the radiosensitivity parameters depend on the oxygen concentration. The induction of lethally damaged cells by a pulse of radiation, their death, and the degradation of dead cells are included. The compartments of lethally damaged cells and of dead cells are subdivided into different subcompartments to simulate the delays that occur in cell death and cell degradation, with a gain in model flexibility. It is shown that, for a single irradiation and under the hypothesis of a sufficiently small spheroid radius, the model can be reformulated as a linear stationary ordinary differential equation system. For this system, the parameter identifiability has been investigated, showing that the set of unknown parameters can be univocally identified by exploiting the response of the model to at least two different radiation doses. Experimental data from spheroids originated from different cell lines are used to identify the unknown parameters and to test the predictive capability of the model with satisfactory results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-009-9482-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "keywords": [
      "unknown parameters", 
      "ordinary differential equation system", 
      "differential equation system", 
      "equation system", 
      "spheroid radius", 
      "parameter identifiability", 
      "parameter estimation", 
      "continuous model", 
      "model flexibility", 
      "predictive capability", 
      "identifiability", 
      "equations", 
      "model", 
      "parameters", 
      "estimation", 
      "experimental data", 
      "modeling", 
      "radiosensitivity parameters", 
      "system", 
      "delay", 
      "satisfactory results", 
      "set", 
      "pulse of radiation", 
      "flexibility", 
      "distribution", 
      "gain", 
      "means", 
      "capability", 
      "oxygen distribution", 
      "results", 
      "radius", 
      "data", 
      "spheroids", 
      "lines", 
      "tumor spheroids", 
      "hypothesis", 
      "response", 
      "pulses", 
      "radiation", 
      "degradation", 
      "oxygen concentration", 
      "compartments", 
      "single irradiation", 
      "cell degradation", 
      "different cell lines", 
      "cells", 
      "dead cells", 
      "concentration", 
      "subcompartments", 
      "radiation doses", 
      "induction", 
      "death", 
      "irradiation", 
      "spheroid response", 
      "cell death", 
      "different radiation doses", 
      "doses", 
      "cell lines", 
      "different subcompartments", 
      "diffusion-consumption equation", 
      "small spheroid radius", 
      "linear stationary ordinary differential equation system", 
      "stationary ordinary differential equation system"
    ], 
    "name": "Response of Tumor Spheroids to Radiation: Modeling and Parameter Estimation", 
    "pagination": "1069-1091", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009124792"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-009-9482-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19915922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-009-9482-y", 
      "https://app.dimensions.ai/details/publication/pub.1009124792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-009-9482-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-009-9482-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-009-9482-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-009-9482-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-009-9482-y'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      22 PREDICATES      115 URIs      102 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-009-9482-y schema:about N2880f7ebffd24c7e87b049df3cbf1d47
2 N3e6974c1323d4a54a03412595f94f2cb
3 N40022ef65d92438eac3a7075788c379d
4 N4665df7306ac42f5bc1d6d570a9f072a
5 N61d91a6078ae4a2e94e550eb82e78c60
6 N6f070526a460440d8214d88cc49ee35c
7 N7469167c951f434d84307337b0a4da29
8 N7d1c1b56b76642ff96a0f978c053709e
9 N8420c19e0ae94573ba95d463f161c43f
10 N8f3e296019a6474eac1814c665b50d04
11 N94b61bb4a5434a5db1d7add6bc2ae895
12 N956661f4f22c40b398f2163311192bab
13 N9569417c52da46be86f0d88e0c524e8c
14 N9d2e36be64424eaa85b47ed1dcc6e2ca
15 Nc2413d0ddff542aba8eac2ec4b41b616
16 Nd6d1d9e086ed4e55a3338d10243265a8
17 Nd7fb656f97584345830b9512ef2db0c2
18 Ne2072f4333314910a0bd722c30424d46
19 Nec54c865462243b59cba384b491cf01e
20 Nec6847b9e1d34534a47040cf44f7a3a0
21 Nf27f2e24a02c462981b39d61b925a831
22 anzsrc-for:01
23 anzsrc-for:0102
24 schema:author N1ce44ab85e10433885d63657bef67bb2
25 schema:citation sg:pub.10.1007/bf00391431
26 sg:pub.10.1007/s11538-007-9287-9
27 sg:pub.10.1016/j.bulm.2003.11.002
28 sg:pub.10.1016/s0092-8240(03)00054-5
29 sg:pub.10.1186/1471-2407-8-201
30 schema:datePublished 2009-11-14
31 schema:datePublishedReg 2009-11-14
32 schema:description We propose a spatially distributed continuous model for the spheroid response to radiation, in which the oxygen distribution is represented by means of a diffusion-consumption equation and the radiosensitivity parameters depend on the oxygen concentration. The induction of lethally damaged cells by a pulse of radiation, their death, and the degradation of dead cells are included. The compartments of lethally damaged cells and of dead cells are subdivided into different subcompartments to simulate the delays that occur in cell death and cell degradation, with a gain in model flexibility. It is shown that, for a single irradiation and under the hypothesis of a sufficiently small spheroid radius, the model can be reformulated as a linear stationary ordinary differential equation system. For this system, the parameter identifiability has been investigated, showing that the set of unknown parameters can be univocally identified by exploiting the response of the model to at least two different radiation doses. Experimental data from spheroids originated from different cell lines are used to identify the unknown parameters and to test the predictive capability of the model with satisfactory results.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N598d4ef1dbc040b294534cdd3fb88a60
37 Nb3c46dd597ea466989788656d3197cc6
38 sg:journal.1018370
39 schema:keywords capability
40 cell death
41 cell degradation
42 cell lines
43 cells
44 compartments
45 concentration
46 continuous model
47 data
48 dead cells
49 death
50 degradation
51 delay
52 different cell lines
53 different radiation doses
54 different subcompartments
55 differential equation system
56 diffusion-consumption equation
57 distribution
58 doses
59 equation system
60 equations
61 estimation
62 experimental data
63 flexibility
64 gain
65 hypothesis
66 identifiability
67 induction
68 irradiation
69 linear stationary ordinary differential equation system
70 lines
71 means
72 model
73 model flexibility
74 modeling
75 ordinary differential equation system
76 oxygen concentration
77 oxygen distribution
78 parameter estimation
79 parameter identifiability
80 parameters
81 predictive capability
82 pulse of radiation
83 pulses
84 radiation
85 radiation doses
86 radiosensitivity parameters
87 radius
88 response
89 results
90 satisfactory results
91 set
92 single irradiation
93 small spheroid radius
94 spheroid radius
95 spheroid response
96 spheroids
97 stationary ordinary differential equation system
98 subcompartments
99 system
100 tumor spheroids
101 unknown parameters
102 schema:name Response of Tumor Spheroids to Radiation: Modeling and Parameter Estimation
103 schema:pagination 1069-1091
104 schema:productId N04ddb3a8de014839892066bc6afbfad3
105 N88e11347f5974df7a1e86e68ea9c0e43
106 Need1aa82d87d4a6982b79ba06282f34b
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009124792
108 https://doi.org/10.1007/s11538-009-9482-y
109 schema:sdDatePublished 2021-11-01T18:13
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N2836ef56e9a74679ada2f2f486dfaad7
112 schema:url https://doi.org/10.1007/s11538-009-9482-y
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N04ddb3a8de014839892066bc6afbfad3 schema:name dimensions_id
117 schema:value pub.1009124792
118 rdf:type schema:PropertyValue
119 N1ce44ab85e10433885d63657bef67bb2 rdf:first sg:person.01321457652.97
120 rdf:rest N9b7dda2ef8074b3394dda6fbbf1896da
121 N2836ef56e9a74679ada2f2f486dfaad7 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N2880f7ebffd24c7e87b049df3cbf1d47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Cell Proliferation
125 rdf:type schema:DefinedTerm
126 N3e6974c1323d4a54a03412595f94f2cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Necrosis
128 rdf:type schema:DefinedTerm
129 N40022ef65d92438eac3a7075788c379d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Melanoma
131 rdf:type schema:DefinedTerm
132 N4665df7306ac42f5bc1d6d570a9f072a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Rats
134 rdf:type schema:DefinedTerm
135 N598d4ef1dbc040b294534cdd3fb88a60 schema:issueNumber 5
136 rdf:type schema:PublicationIssue
137 N5e9a25b1794f47cd80f0759d659df437 rdf:first sg:person.0623363352.52
138 rdf:rest N8fcc4cba1c8e495a9c581593bee21745
139 N61d91a6078ae4a2e94e550eb82e78c60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Oxygen
141 rdf:type schema:DefinedTerm
142 N6f070526a460440d8214d88cc49ee35c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Least-Squares Analysis
144 rdf:type schema:DefinedTerm
145 N7469167c951f434d84307337b0a4da29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Animals
147 rdf:type schema:DefinedTerm
148 N7d1c1b56b76642ff96a0f978c053709e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Spheroids, Cellular
150 rdf:type schema:DefinedTerm
151 N8420c19e0ae94573ba95d463f161c43f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Brain Neoplasms
153 rdf:type schema:DefinedTerm
154 N88e11347f5974df7a1e86e68ea9c0e43 schema:name doi
155 schema:value 10.1007/s11538-009-9482-y
156 rdf:type schema:PropertyValue
157 N8f3e296019a6474eac1814c665b50d04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Cell Line, Tumor
159 rdf:type schema:DefinedTerm
160 N8fcc4cba1c8e495a9c581593bee21745 rdf:first sg:person.01036254641.72
161 rdf:rest Nafebc61e9df24e67a46624795095292d
162 N94b61bb4a5434a5db1d7add6bc2ae895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Apoptosis
164 rdf:type schema:DefinedTerm
165 N956661f4f22c40b398f2163311192bab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Algorithms
167 rdf:type schema:DefinedTerm
168 N9569417c52da46be86f0d88e0c524e8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Cell Count
170 rdf:type schema:DefinedTerm
171 N9b7dda2ef8074b3394dda6fbbf1896da rdf:first sg:person.016246316767.52
172 rdf:rest Nba7937ebef6d4281a333eaf62c991811
173 N9d2e36be64424eaa85b47ed1dcc6e2ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Models, Biological
175 rdf:type schema:DefinedTerm
176 Nafebc61e9df24e67a46624795095292d rdf:first sg:person.01261114530.39
177 rdf:rest rdf:nil
178 Nb3c46dd597ea466989788656d3197cc6 schema:volumeNumber 72
179 rdf:type schema:PublicationVolume
180 Nba7937ebef6d4281a333eaf62c991811 rdf:first sg:person.01261515206.84
181 rdf:rest N5e9a25b1794f47cd80f0759d659df437
182 Nc2413d0ddff542aba8eac2ec4b41b616 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Neoplasms
184 rdf:type schema:DefinedTerm
185 Nd6d1d9e086ed4e55a3338d10243265a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Humans
187 rdf:type schema:DefinedTerm
188 Nd7fb656f97584345830b9512ef2db0c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Diffusion
190 rdf:type schema:DefinedTerm
191 Ne2072f4333314910a0bd722c30424d46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Neuroblastoma
193 rdf:type schema:DefinedTerm
194 Nec54c865462243b59cba384b491cf01e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Cell Death
196 rdf:type schema:DefinedTerm
197 Nec6847b9e1d34534a47040cf44f7a3a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Radiation Tolerance
199 rdf:type schema:DefinedTerm
200 Need1aa82d87d4a6982b79ba06282f34b schema:name pubmed_id
201 schema:value 19915922
202 rdf:type schema:PropertyValue
203 Nf27f2e24a02c462981b39d61b925a831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Computer Simulation
205 rdf:type schema:DefinedTerm
206 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
207 schema:name Mathematical Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
210 schema:name Applied Mathematics
211 rdf:type schema:DefinedTerm
212 sg:journal.1018370 schema:issn 0092-8240
213 1522-9602
214 schema:name Bulletin of Mathematical Biology
215 schema:publisher Springer Nature
216 rdf:type schema:Periodical
217 sg:person.01036254641.72 schema:affiliation grid-institutes:grid.7841.a
218 schema:familyName Papa
219 schema:givenName F.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036254641.72
221 rdf:type schema:Person
222 sg:person.01261114530.39 schema:affiliation grid-institutes:grid.5326.2
223 schema:familyName Sinisgalli
224 schema:givenName C.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39
226 rdf:type schema:Person
227 sg:person.01261515206.84 schema:affiliation grid-institutes:grid.8404.8
228 schema:familyName Fasano
229 schema:givenName A.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84
231 rdf:type schema:Person
232 sg:person.01321457652.97 schema:affiliation grid-institutes:grid.5326.2
233 schema:familyName Bertuzzi
234 schema:givenName A.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97
236 rdf:type schema:Person
237 sg:person.016246316767.52 schema:affiliation grid-institutes:grid.7841.a
238 schema:familyName Bruni
239 schema:givenName C.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016246316767.52
241 rdf:type schema:Person
242 sg:person.0623363352.52 schema:affiliation grid-institutes:grid.5326.2
243 schema:familyName Gandolfi
244 schema:givenName A.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52
246 rdf:type schema:Person
247 sg:pub.10.1007/bf00391431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041804716
248 https://doi.org/10.1007/bf00391431
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/s11538-007-9287-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046113038
251 https://doi.org/10.1007/s11538-007-9287-9
252 rdf:type schema:CreativeWork
253 sg:pub.10.1016/j.bulm.2003.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022804223
254 https://doi.org/10.1016/j.bulm.2003.11.002
255 rdf:type schema:CreativeWork
256 sg:pub.10.1016/s0092-8240(03)00054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033177391
257 https://doi.org/10.1016/s0092-8240(03)00054-5
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1471-2407-8-201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008550126
260 https://doi.org/10.1186/1471-2407-8-201
261 rdf:type schema:CreativeWork
262 grid-institutes:grid.5326.2 schema:alternateName Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30, 00185, Rome, Italy
263 schema:name Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30, 00185, Rome, Italy
264 rdf:type schema:Organization
265 grid-institutes:grid.7841.a schema:alternateName Dipartimento di Informatica e Sistemistica “A. Ruberti”, Sapienza Università di Roma, Via Ariosto 25, 00185, Rome, Italy
266 schema:name Dipartimento di Informatica e Sistemistica “A. Ruberti”, Sapienza Università di Roma, Via Ariosto 25, 00185, Rome, Italy
267 rdf:type schema:Organization
268 grid-institutes:grid.8404.8 schema:alternateName Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy
269 schema:name Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...