Reoxygenation and Split-Dose Response to Radiation in a Tumour Model with Krogh-Type Vascular Geometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02-13

AUTHORS

A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli

ABSTRACT

After a single dose of radiation, transient changes caused by cell death are likely to occur in the oxygenation of surviving cells. Since cell radiosensitivity increases with oxygen concentration, reoxygenation is expected to increase the sensitivity of the cell population to a successive irradiation. In previous papers we proposed a model of the response to treatment of tumour cords (cylindrical arrangements of tumour cells growing around a blood vessel of the tumour). The model included the motion of cells and oxygen diffusion and consumption. By assuming parallel and regularly spaced tumour vessels, as in the Krogh model of microcirculation, we extend our previous model to account for the action of irradiation and the damage repair process, and we study the time course of the oxygenation and the cellular response. By means of simulations of the response to a dose split in two equal fractions, we investigate the dependence of tumour response on the time interval between the fractions and on the main parameters of the system. The influence of reoxygenation on a therapeutic index that compares the effect of a split dose on the tumour and on the normal tissue is also investigated. More... »

PAGES

992-1012

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-007-9287-9

DOI

http://dx.doi.org/10.1007/s11538-007-9287-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046113038

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18270781


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Hypoxia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Tolerance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiobiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertuzzi", 
        "givenName": "A.", 
        "id": "sg:person.01321457652.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica \u201cU. Dini\u201d, Universit\u00e0 degli Studi di Firenze, Viale Morgagni 67/A, 50134, Firenze, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Dipartimento di Matematica \u201cU. Dini\u201d, Universit\u00e0 degli Studi di Firenze, Viale Morgagni 67/A, 50134, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fasano", 
        "givenName": "A.", 
        "id": "sg:person.01261515206.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandolfi", 
        "givenName": "A.", 
        "id": "sg:person.0623363352.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinisgalli", 
        "givenName": "C.", 
        "id": "sg:person.01261114530.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/bjc.1996.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056443381", 
          "https://doi.org/10.1038/bjc.1996.11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(03)00054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033177391", 
          "https://doi.org/10.1016/s0092-8240(03)00054-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-4895-5_76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019907276", 
          "https://doi.org/10.1007/978-1-4684-4895-5_76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037845462", 
          "https://doi.org/10.1007/bf01213223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1985.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016066107", 
          "https://doi.org/10.1038/bjc.1985.55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4682-3-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049887481", 
          "https://doi.org/10.1186/1742-4682-3-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01225916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016227440", 
          "https://doi.org/10.1007/bf01225916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1968.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034199740", 
          "https://doi.org/10.1038/bjc.1968.34"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02-13", 
    "datePublishedReg": "2008-02-13", 
    "description": "After a single dose of radiation, transient changes caused by cell death are likely to occur in the oxygenation of surviving cells. Since cell radiosensitivity increases with oxygen concentration, reoxygenation is expected to increase the sensitivity of the cell population to a successive irradiation. In previous papers we proposed a model of the response to treatment of tumour cords (cylindrical arrangements of tumour cells growing around a blood vessel of the tumour). The model included the motion of cells and oxygen diffusion and consumption. By assuming parallel and regularly spaced tumour vessels, as in the Krogh model of microcirculation, we extend our previous model to account for the action of irradiation and the damage repair process, and we study the time course of the oxygenation and the cellular response. By means of simulations of the response to a dose split in two equal fractions, we investigate the dependence of tumour response on the time interval between the fractions and on the main parameters of the system. The influence of reoxygenation on a therapeutic index that compares the effect of a split dose on the tumour and on the normal tissue is also investigated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11538-007-9287-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "keywords": [
      "dose split", 
      "single dose", 
      "tumor response", 
      "therapeutic index", 
      "tumor vessels", 
      "tumor model", 
      "split dose", 
      "normal tissues", 
      "reoxygenation", 
      "cell radiosensitivity", 
      "dose response", 
      "cell populations", 
      "tumor cords", 
      "time course", 
      "dose", 
      "cell death", 
      "oxygenation", 
      "damage repair process", 
      "vascular geometry", 
      "repair process", 
      "transient changes", 
      "response", 
      "cellular responses", 
      "equal fractions", 
      "cells", 
      "cord", 
      "microcirculation", 
      "tumors", 
      "time interval", 
      "death", 
      "treatment", 
      "radiosensitivity", 
      "tissue", 
      "vessels", 
      "population", 
      "action of irradiation", 
      "course", 
      "intervals", 
      "index", 
      "action", 
      "irradiation", 
      "sensitivity", 
      "fraction", 
      "effect", 
      "changes", 
      "concentration", 
      "radiation", 
      "model", 
      "consumption", 
      "Krogh model", 
      "means", 
      "oxygen concentration", 
      "influence", 
      "parallel", 
      "successive irradiations", 
      "parameters", 
      "system", 
      "motion", 
      "process", 
      "split", 
      "previous paper", 
      "previous models", 
      "dependence", 
      "main parameters", 
      "oxygen diffusion", 
      "diffusion", 
      "motion of cells", 
      "paper", 
      "geometry", 
      "simulations", 
      "means of simulations", 
      "influence of reoxygenation", 
      "Krogh-Type Vascular Geometry"
    ], 
    "name": "Reoxygenation and Split-Dose Response to Radiation in a Tumour Model with Krogh-Type Vascular Geometry", 
    "pagination": "992-1012", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046113038"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-007-9287-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18270781"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-007-9287-9", 
      "https://app.dimensions.ai/details/publication/pub.1046113038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_458.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11538-007-9287-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9287-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9287-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9287-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9287-9'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      22 PREDICATES      117 URIs      101 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-007-9287-9 schema:about N03293d7a66d84148b14c169b34b5d211
2 N0752f032e11c42fa899f7adb6a768ff6
3 N0b3599113b534292adc8c71d4e4f6247
4 N19a3754399e848c7bc4b7fddc1114834
5 N4ec11d1263584a8386298a884fb9e7f8
6 Na178e36dfdfa458aa88417be23b328b7
7 Nbeaedae3516f4396b548b1b5a7ffaf9d
8 Nc1faa8a633b747bfbc39834f443b5986
9 Ndd265ca5a7cf4f3592431a6da04825e3
10 Ne2dd50b31d8e4c10892cce6558d3eb08
11 anzsrc-for:01
12 anzsrc-for:06
13 schema:author Na9c697c1747041bd91136eb2a18cd0f3
14 schema:citation sg:pub.10.1007/978-1-4684-4895-5_76
15 sg:pub.10.1007/bf01213223
16 sg:pub.10.1007/bf01225916
17 sg:pub.10.1016/s0092-8240(03)00054-5
18 sg:pub.10.1038/bjc.1968.34
19 sg:pub.10.1038/bjc.1985.55
20 sg:pub.10.1038/bjc.1996.11
21 sg:pub.10.1186/1742-4682-3-7
22 schema:datePublished 2008-02-13
23 schema:datePublishedReg 2008-02-13
24 schema:description After a single dose of radiation, transient changes caused by cell death are likely to occur in the oxygenation of surviving cells. Since cell radiosensitivity increases with oxygen concentration, reoxygenation is expected to increase the sensitivity of the cell population to a successive irradiation. In previous papers we proposed a model of the response to treatment of tumour cords (cylindrical arrangements of tumour cells growing around a blood vessel of the tumour). The model included the motion of cells and oxygen diffusion and consumption. By assuming parallel and regularly spaced tumour vessels, as in the Krogh model of microcirculation, we extend our previous model to account for the action of irradiation and the damage repair process, and we study the time course of the oxygenation and the cellular response. By means of simulations of the response to a dose split in two equal fractions, we investigate the dependence of tumour response on the time interval between the fractions and on the main parameters of the system. The influence of reoxygenation on a therapeutic index that compares the effect of a split dose on the tumour and on the normal tissue is also investigated.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N08ba041471ad48c38b674f6f4e0f552d
29 N3aef2a0ea59348ad875471635b533f6a
30 sg:journal.1018370
31 schema:keywords Krogh model
32 Krogh-Type Vascular Geometry
33 action
34 action of irradiation
35 cell death
36 cell populations
37 cell radiosensitivity
38 cells
39 cellular responses
40 changes
41 concentration
42 consumption
43 cord
44 course
45 damage repair process
46 death
47 dependence
48 diffusion
49 dose
50 dose response
51 dose split
52 effect
53 equal fractions
54 fraction
55 geometry
56 index
57 influence
58 influence of reoxygenation
59 intervals
60 irradiation
61 main parameters
62 means
63 means of simulations
64 microcirculation
65 model
66 motion
67 motion of cells
68 normal tissues
69 oxygen concentration
70 oxygen diffusion
71 oxygenation
72 paper
73 parallel
74 parameters
75 population
76 previous models
77 previous paper
78 process
79 radiation
80 radiosensitivity
81 reoxygenation
82 repair process
83 response
84 sensitivity
85 simulations
86 single dose
87 split
88 split dose
89 successive irradiations
90 system
91 therapeutic index
92 time course
93 time interval
94 tissue
95 transient changes
96 treatment
97 tumor cords
98 tumor model
99 tumor response
100 tumor vessels
101 tumors
102 vascular geometry
103 vessels
104 schema:name Reoxygenation and Split-Dose Response to Radiation in a Tumour Model with Krogh-Type Vascular Geometry
105 schema:pagination 992-1012
106 schema:productId N8f9514923bcc450db330678ae4c3e574
107 Na2bb86d0d78546c8b16e0379d2c032f7
108 Ne8e7088b914446b39c56a763c38ba962
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046113038
110 https://doi.org/10.1007/s11538-007-9287-9
111 schema:sdDatePublished 2021-11-01T18:11
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher Nb6101a1ddeeb47a5a1105602c810b4b6
114 schema:url https://doi.org/10.1007/s11538-007-9287-9
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N03293d7a66d84148b14c169b34b5d211 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Radiobiology
120 rdf:type schema:DefinedTerm
121 N0752f032e11c42fa899f7adb6a768ff6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Radiation Tolerance
123 rdf:type schema:DefinedTerm
124 N08ba041471ad48c38b674f6f4e0f552d schema:volumeNumber 70
125 rdf:type schema:PublicationVolume
126 N0b3599113b534292adc8c71d4e4f6247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Models, Biological
128 rdf:type schema:DefinedTerm
129 N19a3754399e848c7bc4b7fddc1114834 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Mathematics
131 rdf:type schema:DefinedTerm
132 N3aef2a0ea59348ad875471635b533f6a schema:issueNumber 4
133 rdf:type schema:PublicationIssue
134 N45e826b3865a4195b596c66828d08400 rdf:first sg:person.01261114530.39
135 rdf:rest rdf:nil
136 N4ec11d1263584a8386298a884fb9e7f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Dose-Response Relationship, Radiation
138 rdf:type schema:DefinedTerm
139 N54b9df4ed411474b87ca15840ac619be rdf:first sg:person.0623363352.52
140 rdf:rest N45e826b3865a4195b596c66828d08400
141 N8f9514923bcc450db330678ae4c3e574 schema:name doi
142 schema:value 10.1007/s11538-007-9287-9
143 rdf:type schema:PropertyValue
144 N94743020e9334ff0bf2298cc9ec52b8c rdf:first sg:person.01261515206.84
145 rdf:rest N54b9df4ed411474b87ca15840ac619be
146 Na178e36dfdfa458aa88417be23b328b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Neoplasms
148 rdf:type schema:DefinedTerm
149 Na2bb86d0d78546c8b16e0379d2c032f7 schema:name pubmed_id
150 schema:value 18270781
151 rdf:type schema:PropertyValue
152 Na9c697c1747041bd91136eb2a18cd0f3 rdf:first sg:person.01321457652.97
153 rdf:rest N94743020e9334ff0bf2298cc9ec52b8c
154 Nb6101a1ddeeb47a5a1105602c810b4b6 schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 Nbeaedae3516f4396b548b1b5a7ffaf9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Cell Hypoxia
158 rdf:type schema:DefinedTerm
159 Nc1faa8a633b747bfbc39834f443b5986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Cell Death
161 rdf:type schema:DefinedTerm
162 Ndd265ca5a7cf4f3592431a6da04825e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Animals
164 rdf:type schema:DefinedTerm
165 Ne2dd50b31d8e4c10892cce6558d3eb08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 Ne8e7088b914446b39c56a763c38ba962 schema:name dimensions_id
169 schema:value pub.1046113038
170 rdf:type schema:PropertyValue
171 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
172 schema:name Mathematical Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
175 schema:name Biological Sciences
176 rdf:type schema:DefinedTerm
177 sg:journal.1018370 schema:issn 0092-8240
178 1522-9602
179 schema:name Bulletin of Mathematical Biology
180 schema:publisher Springer Nature
181 rdf:type schema:Periodical
182 sg:person.01261114530.39 schema:affiliation grid-institutes:grid.419461.f
183 schema:familyName Sinisgalli
184 schema:givenName C.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39
186 rdf:type schema:Person
187 sg:person.01261515206.84 schema:affiliation grid-institutes:grid.8404.8
188 schema:familyName Fasano
189 schema:givenName A.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84
191 rdf:type schema:Person
192 sg:person.01321457652.97 schema:affiliation grid-institutes:grid.419461.f
193 schema:familyName Bertuzzi
194 schema:givenName A.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97
196 rdf:type schema:Person
197 sg:person.0623363352.52 schema:affiliation grid-institutes:grid.419461.f
198 schema:familyName Gandolfi
199 schema:givenName A.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52
201 rdf:type schema:Person
202 sg:pub.10.1007/978-1-4684-4895-5_76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019907276
203 https://doi.org/10.1007/978-1-4684-4895-5_76
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/bf01213223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037845462
206 https://doi.org/10.1007/bf01213223
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/bf01225916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016227440
209 https://doi.org/10.1007/bf01225916
210 rdf:type schema:CreativeWork
211 sg:pub.10.1016/s0092-8240(03)00054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033177391
212 https://doi.org/10.1016/s0092-8240(03)00054-5
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/bjc.1968.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034199740
215 https://doi.org/10.1038/bjc.1968.34
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/bjc.1985.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016066107
218 https://doi.org/10.1038/bjc.1985.55
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/bjc.1996.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056443381
221 https://doi.org/10.1038/bjc.1996.11
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1742-4682-3-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049887481
224 https://doi.org/10.1186/1742-4682-3-7
225 rdf:type schema:CreativeWork
226 grid-institutes:grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy
227 schema:name Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185, Roma, Italy
228 rdf:type schema:Organization
229 grid-institutes:grid.8404.8 schema:alternateName Dipartimento di Matematica “U. Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134, Firenze, Italy
230 schema:name Dipartimento di Matematica “U. Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134, Firenze, Italy
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...