Bayesian Inference for the Spatio-Temporal Invasion of Alien Species View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-08

AUTHORS

Alex Cook, Glenn Marion, Adam Butler, Gavin Gibson

ABSTRACT

In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions. More... »

PAGES

2005-2025

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11538-007-9202-4

DOI

http://dx.doi.org/10.1007/s11538-007-9202-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028622368

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17457652


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodiversity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heracleum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Maxwell Institute for Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.500539.a", 
          "name": [
            "Department of Actuarial Mathematics and Statistics, and the Maxwell Institute, Heriot-Watt University, EH14 4AS, Edinburgh, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Alex", 
        "id": "sg:person.01034341733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomathematics and Statistics Scotland", 
          "id": "https://www.grid.ac/institutes/grid.450566.4", 
          "name": [
            "Biomathematics and Statistics Scotland, The King\u2019s Buildings, EH9 3JZ, Edinburgh, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marion", 
        "givenName": "Glenn", 
        "id": "sg:person.01255330025.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255330025.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomathematics and Statistics Scotland", 
          "id": "https://www.grid.ac/institutes/grid.450566.4", 
          "name": [
            "Biomathematics and Statistics Scotland, The King\u2019s Buildings, EH9 3JZ, Edinburgh, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butler", 
        "givenName": "Adam", 
        "id": "sg:person.01130155562.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130155562.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maxwell Institute for Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.500539.a", 
          "name": [
            "Department of Actuarial Mathematics and Statistics, and the Maxwell Institute, Heriot-Watt University, EH14 4AS, Edinburgh, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibson", 
        "givenName": "Gavin", 
        "id": "sg:person.01114306473.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114306473.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-4286-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000844355", 
          "https://doi.org/10.1007/978-1-4757-4286-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4286-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000844355", 
          "https://doi.org/10.1007/978-1-4757-4286-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023200324137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004349458", 
          "https://doi.org/10.1023/a:1023200324137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ecolsys.32.081501.114037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006300337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1992.4.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007421220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2005.00466.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019282223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.2002.00693.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020603564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-4179(95)00026-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023127639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024310275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2004.00687.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034630954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3236442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1541-0420.00074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037217094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2004.00702.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038252910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3207(96)00021-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038990631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-006-0019-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039431575", 
          "https://doi.org/10.1007/s11222-006-0019-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-006-0019-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039431575", 
          "https://doi.org/10.1007/s11222-006-0019-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoap/1034625254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041527223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2435.2002.00653.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041691166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2000.00538.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(01)02101-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042864843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2005.00488.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043504679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3236461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044974830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0306899100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045261390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5459.1770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047570197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0022-0477.2004.00953.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049073481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1461-0248.2003.00417.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051164523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2000.00556.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052729394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1975.10480272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/82.4.733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bjps/55.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059432563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto.1997.87.2.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060100950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2261365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069854449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2404188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069913803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2845738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070098792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070161126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070161126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3109759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070202574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075216843", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083061673", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511624094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109725868", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420057669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725868"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08", 
    "datePublishedReg": "2007-08-01", 
    "description": "In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11538-007-9202-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "Bayesian Inference for the Spatio-Temporal Invasion of Alien Species", 
    "pagination": "2005-2025", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8858f96cb612e2d50ec7474281a4d3c3747b21f50293a09d358631f81a8cb92c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17457652"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0401404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11538-007-9202-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028622368"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11538-007-9202-4", 
      "https://app.dimensions.ai/details/publication/pub.1028622368"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11538-007-9202-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9202-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9202-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9202-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11538-007-9202-4'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      80 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11538-007-9202-4 schema:about N0016e2b227684d58a71eccd0e36c6ad6
2 N48412bdd312242818e08c0e85fe505f1
3 N4ff5376ee6d64f83ae200912e56fcf86
4 N7d679ea6cbfa4cc382c75e0e825f89fa
5 N872fdf00a69f46099dbf0ed523676cd7
6 N8fc35209e46249b9b4a2207b8ddc384d
7 Nca0a8492f8464ab0ab640dbd8cb816a2
8 Nd786ecfdc1eb447f9b646cea249b9f27
9 Ne55702928a0e417c9015732fab93e84e
10 Nef9524275ea04d0a967a57d8bb6d2c58
11 Nefc426528de04da2a83f285296134277
12 anzsrc-for:01
13 anzsrc-for:0104
14 schema:author Ne9dd7efc73724d5c8de23b4559686db7
15 schema:citation sg:pub.10.1007/978-1-4757-4286-2
16 sg:pub.10.1007/s11222-006-0019-z
17 sg:pub.10.1023/a:1023200324137
18 https://app.dimensions.ai/details/publication/pub.1075216843
19 https://app.dimensions.ai/details/publication/pub.1083061673
20 https://app.dimensions.ai/details/publication/pub.1109725868
21 https://doi.org/10.1016/0006-3207(96)00021-3
22 https://doi.org/10.1016/0305-4179(95)00026-8
23 https://doi.org/10.1016/s0169-5347(01)02101-2
24 https://doi.org/10.1017/cbo9780511624094
25 https://doi.org/10.1046/j.1365-2435.2002.00653.x
26 https://doi.org/10.1046/j.1365-2664.2000.00538.x
27 https://doi.org/10.1046/j.1365-2664.2000.00556.x
28 https://doi.org/10.1046/j.1365-2699.2002.00693.x
29 https://doi.org/10.1046/j.1461-0248.2003.00417.x
30 https://doi.org/10.1073/pnas.0306899100
31 https://doi.org/10.1080/01621459.1975.10480272
32 https://doi.org/10.1093/biomet/82.4.733
33 https://doi.org/10.1093/bjps/55.1.1
34 https://doi.org/10.1093/oxfordjournals.molbev.a026091
35 https://doi.org/10.1094/phyto.1997.87.2.139
36 https://doi.org/10.1111/1541-0420.00074
37 https://doi.org/10.1111/j.0022-0477.2004.00953.x
38 https://doi.org/10.1111/j.1461-0248.2004.00687.x
39 https://doi.org/10.1111/j.1461-0248.2004.00702.x
40 https://doi.org/10.1111/j.1467-9876.2005.00466.x
41 https://doi.org/10.1111/j.1467-9876.2005.00488.x
42 https://doi.org/10.1126/science.287.5459.1770
43 https://doi.org/10.1146/annurev.ecolsys.32.081501.114037
44 https://doi.org/10.1162/neco.1992.4.1.1
45 https://doi.org/10.1201/9781420057669
46 https://doi.org/10.1214/aoap/1034625254
47 https://doi.org/10.2307/2261365
48 https://doi.org/10.2307/2404188
49 https://doi.org/10.2307/2845738
50 https://doi.org/10.2307/2983509
51 https://doi.org/10.2307/2986258
52 https://doi.org/10.2307/3109759
53 https://doi.org/10.2307/3236442
54 https://doi.org/10.2307/3236461
55 schema:datePublished 2007-08
56 schema:datePublishedReg 2007-08-01
57 schema:description In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N34fb670eccd547c7a99c3d05287ca9df
62 Ndd548c1ee91f4e15bb01febadcdeae62
63 sg:journal.1018370
64 schema:name Bayesian Inference for the Spatio-Temporal Invasion of Alien Species
65 schema:pagination 2005-2025
66 schema:productId N24be8ae362ef49bbadaec5ab1d46b7f3
67 N2e9e4ea8c462453dbc519b20a0947571
68 N353e7198e5b8488bb8ea38788bde2fe1
69 N5e1038538cd444c1ae28b3591bc06b46
70 Nddd68455de824fd7808e87c8121fad7d
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028622368
72 https://doi.org/10.1007/s11538-007-9202-4
73 schema:sdDatePublished 2019-04-10T15:12
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Ncdd310e5394941deacdb45bfea448cab
76 schema:url http://link.springer.com/10.1007%2Fs11538-007-9202-4
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0016e2b227684d58a71eccd0e36c6ad6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name United Kingdom
82 rdf:type schema:DefinedTerm
83 N0d69eadcc7724fe79c3d5d212e2c052e rdf:first sg:person.01255330025.27
84 rdf:rest N34e3670abfce44aa9f9a161efe69b6d4
85 N24be8ae362ef49bbadaec5ab1d46b7f3 schema:name dimensions_id
86 schema:value pub.1028622368
87 rdf:type schema:PropertyValue
88 N2e9e4ea8c462453dbc519b20a0947571 schema:name readcube_id
89 schema:value 8858f96cb612e2d50ec7474281a4d3c3747b21f50293a09d358631f81a8cb92c
90 rdf:type schema:PropertyValue
91 N34e3670abfce44aa9f9a161efe69b6d4 rdf:first sg:person.01130155562.64
92 rdf:rest Nc2482ee000384cb5a8b5bcafedd02842
93 N34fb670eccd547c7a99c3d05287ca9df schema:volumeNumber 69
94 rdf:type schema:PublicationVolume
95 N353e7198e5b8488bb8ea38788bde2fe1 schema:name nlm_unique_id
96 schema:value 0401404
97 rdf:type schema:PropertyValue
98 N48412bdd312242818e08c0e85fe505f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Mathematics
100 rdf:type schema:DefinedTerm
101 N4ff5376ee6d64f83ae200912e56fcf86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Monte Carlo Method
103 rdf:type schema:DefinedTerm
104 N5e1038538cd444c1ae28b3591bc06b46 schema:name pubmed_id
105 schema:value 17457652
106 rdf:type schema:PropertyValue
107 N7d679ea6cbfa4cc382c75e0e825f89fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Heracleum
109 rdf:type schema:DefinedTerm
110 N872fdf00a69f46099dbf0ed523676cd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Models, Biological
112 rdf:type schema:DefinedTerm
113 N8fc35209e46249b9b4a2207b8ddc384d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Biodiversity
115 rdf:type schema:DefinedTerm
116 Nc2482ee000384cb5a8b5bcafedd02842 rdf:first sg:person.01114306473.12
117 rdf:rest rdf:nil
118 Nca0a8492f8464ab0ab640dbd8cb816a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Time Factors
120 rdf:type schema:DefinedTerm
121 Ncdd310e5394941deacdb45bfea448cab schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nd786ecfdc1eb447f9b646cea249b9f27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Ecosystem
125 rdf:type schema:DefinedTerm
126 Ndd548c1ee91f4e15bb01febadcdeae62 schema:issueNumber 6
127 rdf:type schema:PublicationIssue
128 Nddd68455de824fd7808e87c8121fad7d schema:name doi
129 schema:value 10.1007/s11538-007-9202-4
130 rdf:type schema:PropertyValue
131 Ne55702928a0e417c9015732fab93e84e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Bayes Theorem
133 rdf:type schema:DefinedTerm
134 Ne9dd7efc73724d5c8de23b4559686db7 rdf:first sg:person.01034341733.34
135 rdf:rest N0d69eadcc7724fe79c3d5d212e2c052e
136 Nef9524275ea04d0a967a57d8bb6d2c58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Stochastic Processes
138 rdf:type schema:DefinedTerm
139 Nefc426528de04da2a83f285296134277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Markov Chains
141 rdf:type schema:DefinedTerm
142 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
143 schema:name Mathematical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
146 schema:name Statistics
147 rdf:type schema:DefinedTerm
148 sg:journal.1018370 schema:issn 0092-8240
149 1522-9602
150 schema:name Bulletin of Mathematical Biology
151 rdf:type schema:Periodical
152 sg:person.01034341733.34 schema:affiliation https://www.grid.ac/institutes/grid.500539.a
153 schema:familyName Cook
154 schema:givenName Alex
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34
156 rdf:type schema:Person
157 sg:person.01114306473.12 schema:affiliation https://www.grid.ac/institutes/grid.500539.a
158 schema:familyName Gibson
159 schema:givenName Gavin
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114306473.12
161 rdf:type schema:Person
162 sg:person.01130155562.64 schema:affiliation https://www.grid.ac/institutes/grid.450566.4
163 schema:familyName Butler
164 schema:givenName Adam
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130155562.64
166 rdf:type schema:Person
167 sg:person.01255330025.27 schema:affiliation https://www.grid.ac/institutes/grid.450566.4
168 schema:familyName Marion
169 schema:givenName Glenn
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255330025.27
171 rdf:type schema:Person
172 sg:pub.10.1007/978-1-4757-4286-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000844355
173 https://doi.org/10.1007/978-1-4757-4286-2
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11222-006-0019-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039431575
176 https://doi.org/10.1007/s11222-006-0019-z
177 rdf:type schema:CreativeWork
178 sg:pub.10.1023/a:1023200324137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004349458
179 https://doi.org/10.1023/a:1023200324137
180 rdf:type schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1075216843 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1083061673 schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1109725868 schema:CreativeWork
184 https://doi.org/10.1016/0006-3207(96)00021-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038990631
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0305-4179(95)00026-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023127639
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0169-5347(01)02101-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042864843
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1017/cbo9780511624094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664018
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1046/j.1365-2435.2002.00653.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041691166
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1046/j.1365-2664.2000.00538.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685559
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1046/j.1365-2664.2000.00556.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052729394
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1046/j.1365-2699.2002.00693.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020603564
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1046/j.1461-0248.2003.00417.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051164523
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.0306899100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045261390
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/01621459.1975.10480272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301451
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/biomet/82.4.733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420612
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bjps/55.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059432563
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/oxfordjournals.molbev.a026091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024310275
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1094/phyto.1997.87.2.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060100950
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/1541-0420.00074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037217094
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/j.0022-0477.2004.00953.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049073481
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1461-0248.2004.00687.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034630954
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1111/j.1461-0248.2004.00702.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038252910
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1111/j.1467-9876.2005.00466.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019282223
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/j.1467-9876.2005.00488.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043504679
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.287.5459.1770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047570197
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006300337
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1162/neco.1992.4.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007421220
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1201/9781420057669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725868
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1214/aoap/1034625254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041527223
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2307/2261365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069854449
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2307/2404188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069913803
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2307/2845738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070098792
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2307/2983509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070161126
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2307/2986258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983578
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2307/3109759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070202574
247 rdf:type schema:CreativeWork
248 https://doi.org/10.2307/3236442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664749
249 rdf:type schema:CreativeWork
250 https://doi.org/10.2307/3236461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044974830
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.450566.4 schema:alternateName Biomathematics and Statistics Scotland
253 schema:name Biomathematics and Statistics Scotland, The King’s Buildings, EH9 3JZ, Edinburgh, Scotland
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.500539.a schema:alternateName Maxwell Institute for Mathematical Sciences
256 schema:name Department of Actuarial Mathematics and Statistics, and the Maxwell Institute, Heriot-Watt University, EH14 4AS, Edinburgh, Scotland
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...