Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Saeid Bahremand, Hoo Sang Ko, Ramin Balouchzadeh, H. Felix Lee, Sarah Park, Guim Kwon

ABSTRACT

Artificial pancreas system (APS) is a viable option to treat diabetic patients. Researchers, however, have not conclusively determined the best control method for APS. Due to intra-/inter-variability of insulin absorption and action, an individualized algorithm is required to control blood glucose level (BGL) for each patient. To this end, we developed model predictive control (MPC) based on artificial neural networks (ANNs), which combines ANN for BGL prediction based on inputs and MPC for BGL control based on the ANN (NN-MPC). First, we developed a mathematical model for diabetic rats, which was used to identify individual virtual subjects by fitting to empirical data collected through an APS, including BGL data, insulin injection, and food intake. Then, the virtual subjects were used to generate datasets for training ANNs. The NN-MPC determines control actions (insulin injection) based on BGL predicted by the ANN. To evaluate the NN-MPC, we conducted experiments using four virtual subjects under three different scenarios. Overall, the NN-MPC maintained BGL within the normal range about 90% of the time with a mean absolute deviation of 4.7 mg/dl from a desired BGL. Our findings suggest that the NN-MPC can provide subject-specific BGL control in conjunction with a closed-loop APS. Graphical abstract ᅟ. More... »

PAGES

177-191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11517-018-1872-6

DOI

http://dx.doi.org/10.1007/s11517-018-1872-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105949359

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30069675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Experimental", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreas, Artificial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats, Sprague-Dawley", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, 62026, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahremand", 
        "givenName": "Saeid", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, 62026, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Hoo Sang", 
        "id": "sg:person.013436704436.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013436704436.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, 62026, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balouchzadeh", 
        "givenName": "Ramin", 
        "id": "sg:person.014341153753.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341153753.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, 62026, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Felix Lee", 
        "givenName": "H.", 
        "id": "sg:person.015136534353.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136534353.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Research and Instructional Services, Duke University, 27708, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sarah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 62026, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Guim", 
        "id": "sg:person.0645323223.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645323223.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/aic.11699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002480201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.11699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002480201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.09.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003119338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.09.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003119338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2007.12.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006134166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03091900410001709088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006836254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680800200507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006993397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680800200507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006993397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1988.tb15781.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010731742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1988.tb15781.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010731742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc09-9032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012237052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680700100603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019269048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680700100603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019269048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db10-0103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019401227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229681300700624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020011908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229681300700624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020011908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2012.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020602459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021951348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229681300700623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023468884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229681300700623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023468884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2009.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024078019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680900300207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024343007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680900300207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024343007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033803609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2013.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034831725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2005.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.15.4137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037917301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/dmso.s50789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039785445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690461220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040193817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/17434440.2013.827515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048994552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2011.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052136822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie060246y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055599908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie060246y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055599908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0967-3334/25/4/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059122703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dia.2009.0076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059249232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/37.845038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061163429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.839639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2006.879461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2007.893506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2008.915665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2003.821326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061656275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1979.236.6.e667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080342534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heliyon.2017.e00310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085908208"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Artificial pancreas system (APS) is a viable option to treat diabetic patients. Researchers, however, have not conclusively determined the best control method for APS. Due to intra-/inter-variability of insulin absorption and action, an individualized algorithm is required to control blood glucose level (BGL) for each patient. To this end, we developed model predictive control (MPC) based on artificial neural networks (ANNs), which combines ANN for BGL prediction based on inputs and MPC for BGL control based on the ANN (NN-MPC). First, we developed a mathematical model for diabetic rats, which was used to identify individual virtual subjects by fitting to empirical data collected through an APS, including BGL data, insulin injection, and food intake. Then, the virtual subjects were used to generate datasets for training ANNs. The NN-MPC determines control actions (insulin injection) based on BGL predicted by the ANN. To evaluate the NN-MPC, we conducted experiments using four virtual subjects under three different scenarios. Overall, the NN-MPC maintained BGL within the normal range about 90% of the time with a mean absolute deviation of 4.7\u00a0mg/dl from a desired BGL. Our findings suggest that the NN-MPC can provide subject-specific BGL control in conjunction with a closed-loop APS. Graphical abstract \u115f.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11517-018-1872-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system", 
    "pagination": "177-191", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a81137b0fb328e0343bb80f43c439528f14c40a54c150a8b76862370c8fbd6b2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30069675"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11517-018-1872-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105949359"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11517-018-1872-6", 
      "https://app.dimensions.ai/details/publication/pub.1105949359"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54015_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11517-018-1872-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1872-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1872-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1872-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1872-6'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      72 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11517-018-1872-6 schema:about N2d01e1e4ca6b492aa96e8a434ae89d30
2 N2ea8c811378c4f10b1a2a6cfb47e9bd6
3 N6ff7bc78365949ef82500119e22fbf5c
4 N80bda3b90fd64fc3bfff680ddf91d92e
5 N8cf75c34757a45a990b5ef0d63817ea6
6 N921a8e222001480ca467f8390bd9ec93
7 Na138e409fd3e408dafb6c26e45bfd556
8 Nf91ba496e14c43758ca1e0c16d138912
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author N9537dff2b62b4a5c921fc3bd4436c0a6
12 schema:citation https://doi.org/10.1002/aic.11699
13 https://doi.org/10.1002/aic.690461220
14 https://doi.org/10.1016/j.bspc.2009.03.002
15 https://doi.org/10.1016/j.cmpb.2009.06.005
16 https://doi.org/10.1016/j.cmpb.2011.11.006
17 https://doi.org/10.1016/j.compchemeng.2007.07.007
18 https://doi.org/10.1016/j.eswa.2005.09.037
19 https://doi.org/10.1016/j.heliyon.2017.e00310
20 https://doi.org/10.1016/j.jfranklin.2012.02.011
21 https://doi.org/10.1016/j.jmaa.2007.12.073
22 https://doi.org/10.1016/j.mbs.2013.07.017
23 https://doi.org/10.1016/j.medengphy.2005.04.009
24 https://doi.org/10.1021/ie060246y
25 https://doi.org/10.1080/03091900410001709088
26 https://doi.org/10.1088/0967-3334/25/4/010
27 https://doi.org/10.1089/dia.2009.0076
28 https://doi.org/10.1109/37.845038
29 https://doi.org/10.1109/iembs.2007.4353708
30 https://doi.org/10.1109/tbme.2004.839639
31 https://doi.org/10.1109/tbme.2006.879461
32 https://doi.org/10.1109/tbme.2007.893506
33 https://doi.org/10.1109/tbme.2008.915665
34 https://doi.org/10.1109/titb.2003.821326
35 https://doi.org/10.1111/j.0954-6820.1988.tb15781.x
36 https://doi.org/10.1152/ajpendo.1979.236.6.e667
37 https://doi.org/10.1177/193229680700100603
38 https://doi.org/10.1177/193229680800200507
39 https://doi.org/10.1177/193229680900300207
40 https://doi.org/10.1177/193229681300700623
41 https://doi.org/10.1177/193229681300700624
42 https://doi.org/10.1586/17434440.2013.827515
43 https://doi.org/10.2147/dmso.s50789
44 https://doi.org/10.2337/db10-0103
45 https://doi.org/10.2337/dc09-9032
46 https://doi.org/10.3748/wjg.15.4137
47 schema:datePublished 2019-01
48 schema:datePublishedReg 2019-01-01
49 schema:description Artificial pancreas system (APS) is a viable option to treat diabetic patients. Researchers, however, have not conclusively determined the best control method for APS. Due to intra-/inter-variability of insulin absorption and action, an individualized algorithm is required to control blood glucose level (BGL) for each patient. To this end, we developed model predictive control (MPC) based on artificial neural networks (ANNs), which combines ANN for BGL prediction based on inputs and MPC for BGL control based on the ANN (NN-MPC). First, we developed a mathematical model for diabetic rats, which was used to identify individual virtual subjects by fitting to empirical data collected through an APS, including BGL data, insulin injection, and food intake. Then, the virtual subjects were used to generate datasets for training ANNs. The NN-MPC determines control actions (insulin injection) based on BGL predicted by the ANN. To evaluate the NN-MPC, we conducted experiments using four virtual subjects under three different scenarios. Overall, the NN-MPC maintained BGL within the normal range about 90% of the time with a mean absolute deviation of 4.7 mg/dl from a desired BGL. Our findings suggest that the NN-MPC can provide subject-specific BGL control in conjunction with a closed-loop APS. Graphical abstract ᅟ.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N878760af3baf43d5bfccf3f1679941a7
54 N96a379745c6b4336a02d931cb13271b6
55 sg:journal.1005585
56 schema:name Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system
57 schema:pagination 177-191
58 schema:productId N3430722b4881448796eb6f18cf39165e
59 N6d6c6754255044d0a11111693c0defcf
60 N8f2d36fb7ca440e5845168036d8cdb9e
61 Ncca61b4c44a74ca4827bd3292b0133a6
62 Nfbf67b821bb5479ea69f9fb7d52224c1
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105949359
64 https://doi.org/10.1007/s11517-018-1872-6
65 schema:sdDatePublished 2019-04-11T12:16
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nd4bb11c44afa482480f1f765bd65c84d
68 schema:url https://link.springer.com/10.1007%2Fs11517-018-1872-6
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N00bba7ea8be446ce9fd645b752a5dfb4 rdf:first N0f65c6a8bc9540afa6a1df8945818d7b
73 rdf:rest Nd0044b087f334e1dbae5f176c4de3157
74 N0f65c6a8bc9540afa6a1df8945818d7b schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
75 schema:familyName Park
76 schema:givenName Sarah
77 rdf:type schema:Person
78 N17246bfe1d544da1baf610279eb8a352 rdf:first sg:person.013436704436.51
79 rdf:rest Nbfd3f333b04440d4b51682be66c71292
80 N2d01e1e4ca6b492aa96e8a434ae89d30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Diabetes Mellitus, Experimental
82 rdf:type schema:DefinedTerm
83 N2ea8c811378c4f10b1a2a6cfb47e9bd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Neural Networks (Computer)
85 rdf:type schema:DefinedTerm
86 N3430722b4881448796eb6f18cf39165e schema:name doi
87 schema:value 10.1007/s11517-018-1872-6
88 rdf:type schema:PropertyValue
89 N59636edf24d3439684b47d3d2f7e5328 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
90 schema:familyName Bahremand
91 schema:givenName Saeid
92 rdf:type schema:Person
93 N6d6c6754255044d0a11111693c0defcf schema:name dimensions_id
94 schema:value pub.1105949359
95 rdf:type schema:PropertyValue
96 N6ff7bc78365949ef82500119e22fbf5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Pancreas, Artificial
98 rdf:type schema:DefinedTerm
99 N80bda3b90fd64fc3bfff680ddf91d92e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Animals
101 rdf:type schema:DefinedTerm
102 N878760af3baf43d5bfccf3f1679941a7 schema:volumeNumber 57
103 rdf:type schema:PublicationVolume
104 N8cf75c34757a45a990b5ef0d63817ea6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Diabetes Mellitus, Type 1
106 rdf:type schema:DefinedTerm
107 N8f2d36fb7ca440e5845168036d8cdb9e schema:name nlm_unique_id
108 schema:value 7704869
109 rdf:type schema:PropertyValue
110 N921a8e222001480ca467f8390bd9ec93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Rats, Sprague-Dawley
112 rdf:type schema:DefinedTerm
113 N9537dff2b62b4a5c921fc3bd4436c0a6 rdf:first N59636edf24d3439684b47d3d2f7e5328
114 rdf:rest N17246bfe1d544da1baf610279eb8a352
115 N96a379745c6b4336a02d931cb13271b6 schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 N9f690e95b683484586bf38dfc3958c47 rdf:first sg:person.015136534353.74
118 rdf:rest N00bba7ea8be446ce9fd645b752a5dfb4
119 Na138e409fd3e408dafb6c26e45bfd556 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Insulin
121 rdf:type schema:DefinedTerm
122 Nbfd3f333b04440d4b51682be66c71292 rdf:first sg:person.014341153753.31
123 rdf:rest N9f690e95b683484586bf38dfc3958c47
124 Ncca61b4c44a74ca4827bd3292b0133a6 schema:name readcube_id
125 schema:value a81137b0fb328e0343bb80f43c439528f14c40a54c150a8b76862370c8fbd6b2
126 rdf:type schema:PropertyValue
127 Nd0044b087f334e1dbae5f176c4de3157 rdf:first sg:person.0645323223.21
128 rdf:rest rdf:nil
129 Nd4bb11c44afa482480f1f765bd65c84d schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 Nf91ba496e14c43758ca1e0c16d138912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Blood Glucose
133 rdf:type schema:DefinedTerm
134 Nfbf67b821bb5479ea69f9fb7d52224c1 schema:name pubmed_id
135 schema:value 30069675
136 rdf:type schema:PropertyValue
137 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
138 schema:name Medical and Health Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
141 schema:name Clinical Sciences
142 rdf:type schema:DefinedTerm
143 sg:journal.1005585 schema:issn 1357-5481
144 1741-0444
145 schema:name Medical & Biological Engineering & Computing
146 rdf:type schema:Periodical
147 sg:person.013436704436.51 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
148 schema:familyName Ko
149 schema:givenName Hoo Sang
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013436704436.51
151 rdf:type schema:Person
152 sg:person.014341153753.31 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
153 schema:familyName Balouchzadeh
154 schema:givenName Ramin
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014341153753.31
156 rdf:type schema:Person
157 sg:person.015136534353.74 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
158 schema:familyName Felix Lee
159 schema:givenName H.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136534353.74
161 rdf:type schema:Person
162 sg:person.0645323223.21 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
163 schema:familyName Kwon
164 schema:givenName Guim
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645323223.21
166 rdf:type schema:Person
167 https://doi.org/10.1002/aic.11699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002480201
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/aic.690461220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040193817
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.bspc.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021951348
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.cmpb.2009.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024078019
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.cmpb.2011.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052136822
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.compchemeng.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033803609
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.eswa.2005.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003119338
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.heliyon.2017.e00310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085908208
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jfranklin.2012.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020602459
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jmaa.2007.12.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006134166
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.mbs.2013.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034831725
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.medengphy.2005.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891693
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/ie060246y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055599908
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/03091900410001709088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006836254
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/0967-3334/25/4/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059122703
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1089/dia.2009.0076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059249232
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/37.845038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061163429
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/iembs.2007.4353708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517940
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tbme.2004.839639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526267
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tbme.2006.879461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526747
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tbme.2007.893506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527017
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tbme.2008.915665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527462
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/titb.2003.821326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656275
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/j.0954-6820.1988.tb15781.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010731742
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1152/ajpendo.1979.236.6.e667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080342534
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1177/193229680700100603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019269048
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1177/193229680800200507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006993397
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1177/193229680900300207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024343007
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1177/193229681300700623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023468884
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1177/193229681300700624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020011908
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1586/17434440.2013.827515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048994552
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2147/dmso.s50789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039785445
230 rdf:type schema:CreativeWork
231 https://doi.org/10.2337/db10-0103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019401227
232 rdf:type schema:CreativeWork
233 https://doi.org/10.2337/dc09-9032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012237052
234 rdf:type schema:CreativeWork
235 https://doi.org/10.3748/wjg.15.4137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037917301
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
238 schema:name Research and Instructional Services, Duke University, 27708, Durham, NC, USA
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.263857.d schema:alternateName Southern Illinois University Edwardsville
241 schema:name Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, 62026, Edwardsville, IL, USA
242 Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 62026, Edwardsville, IL, USA
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...