Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Longfei Ma, Weipeng Jiang, Boyu Zhang, Xiaofeng Qu, Guochen Ning, Xinran Zhang, Hongen Liao

ABSTRACT

It is challenging to achieve high implant accuracy in dental implant placement, because high risk tissues need to be avoided. In this study, we present an augmented reality (AR) surgical navigation with an accurate cone beam computed tomography (CBCT)-patient registration method to provide clinically desired dental implant accuracy. A registration device is used for registration between preoperative data and patient outside the patient's mouth. After registration, the registration device is worn on the patient's teeth for tracking the patient. Naked-eye 3D images of the planning path and the mandibular nerve are superimposed onto the patient in situ to form an AR scene. Simultaneously, a 3D image of the drill is overlaid accurately on the real one to guide the implant procedure. Finally, implant accuracy is evaluated postoperatively. A model experiment was performed by an experienced dentist. Totally, ten parallel pins were inserted into five 3D-printed mandible models guided by our AR navigation method and through the dentist's experience, respectively. AR-guided dental implant placement showed better results than the dentist's experience (mean target error = 1.25 mm vs. 1.63 mm; mean angle error = 4.03° vs. 6.10°). Experimental results indicate that the proposed method is expected to be applied in the clinic. Graphical abstract ᅟ. More... »

PAGES

47-57

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11517-018-1861-9

DOI

http://dx.doi.org/10.1007/s11517-018-1861-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105251449

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29967935


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cone-Beam Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dental Implants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mandible", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgery, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Longfei", 
        "id": "sg:person.0644131203.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644131203.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Shijitan Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414367.3", 
          "name": [
            "Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China", 
            "Department of Stomatology, Beijing Shijitan Hospital, 100038, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Weipeng", 
        "id": "sg:person.013365101460.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365101460.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Boyu", 
        "id": "sg:person.014374347327.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374347327.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "Xiaofeng", 
        "id": "sg:person.014527442744.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527442744.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ning", 
        "givenName": "Guochen", 
        "id": "sg:person.010372020260.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372020260.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xinran", 
        "id": "sg:person.013100622717.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100622717.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Hongen", 
        "id": "sg:person.01150424033.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150424033.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/clr.12414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006039534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0501.2002.130107.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006910093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.joms.2011.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010053909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cid.12189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013526684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1054/ijom.2000.0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016257714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcs.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020980202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.joms.2015.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021229675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.joms.2003.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023116581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0501.2003.110812.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024426566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.id.0000217790.68814.1e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025163765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.id.0000217790.68814.1e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025163765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijom.2004.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026990569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcms.2014.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0501.2004.01058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035162886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0501.2004.01058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035162886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-015-0089-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037578129", 
          "https://doi.org/10.1186/s12880-015-0089-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3913(10)60072-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038069202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0501.2001.012003207.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038203886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23623-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038319149", 
          "https://doi.org/10.1007/978-3-642-23623-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23623-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038319149", 
          "https://doi.org/10.1007/978-3-642-23623-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2155-8213.140606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040086430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2016.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041912460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnsc.2014.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044030640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0501.2005.01153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051451404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0501.2005.01153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051451404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2010.2040278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2014.2301191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2009.2024208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1987.4767965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077925470", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-017-1652-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091052293", 
          "https://doi.org/10.1007/s11548-017-1652-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-017-1652-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091052293", 
          "https://doi.org/10.1007/s11548-017-1652-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2017.2771356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092606225"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "It is challenging to achieve high implant accuracy in dental implant placement, because high risk tissues need to be avoided. In this study, we present an augmented reality (AR) surgical navigation with an accurate cone beam computed tomography (CBCT)-patient registration method to provide clinically desired dental implant accuracy. A registration device is used for registration between preoperative data and patient outside the patient's mouth. After registration, the registration device is worn on the patient's teeth for tracking the patient. Naked-eye 3D images of the planning path and the mandibular nerve are superimposed onto the patient in situ to form an AR scene. Simultaneously, a 3D image of the drill is overlaid accurately on the real one to guide the implant procedure. Finally, implant accuracy is evaluated postoperatively. A model experiment was performed by an experienced dentist. Totally, ten parallel pins were inserted into five 3D-printed mandible models guided by our AR navigation method and through the dentist's experience, respectively. AR-guided dental implant placement showed better results than the dentist's experience (mean target error\u2009=\u20091.25\u00a0mm vs. 1.63\u00a0mm; mean angle error\u2009=\u20094.03\u00b0 vs. 6.10\u00b0). Experimental results indicate that the proposed method is expected to be applied in the clinic. Graphical abstract \u115f.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11517-018-1861-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement", 
    "pagination": "47-57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8121a5fab223263be2a802a8de711aaa2b99aa191ed798d3636bd16b09e6e8e9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29967935"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11517-018-1861-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105251449"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11517-018-1861-9", 
      "https://app.dimensions.ai/details/publication/pub.1105251449"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53999_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11517-018-1861-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1861-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1861-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1861-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-018-1861-9'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      64 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11517-018-1861-9 schema:about N24c91756cc8b4c448fceec99dba4a30c
2 N26c7830da5c24b1d8b07495a2674469a
3 N31a7b85b0a014faca8c99650d9421050
4 N3fa3f97a677e4ae2a1a67f779f403a7f
5 N62c6fee69b274c329e12aeb49af77b8a
6 Na1f67b3d3f7640b69f01eeccf92feb74
7 Nb1cb660cdc13457289e199aef130b7ce
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N2105f0df337e4db9809c79763367cb48
11 schema:citation sg:pub.10.1007/978-3-642-23623-5_11
12 sg:pub.10.1007/s11548-017-1652-z
13 sg:pub.10.1186/s12880-015-0089-5
14 https://app.dimensions.ai/details/publication/pub.1077925470
15 https://doi.org/10.1002/rcs.227
16 https://doi.org/10.1016/j.ijom.2004.03.018
17 https://doi.org/10.1016/j.jcms.2014.04.025
18 https://doi.org/10.1016/j.joms.2003.08.017
19 https://doi.org/10.1016/j.joms.2011.04.026
20 https://doi.org/10.1016/j.joms.2015.09.022
21 https://doi.org/10.1016/j.msec.2016.10.044
22 https://doi.org/10.1016/j.pnsc.2014.04.001
23 https://doi.org/10.1016/s0022-3913(10)60072-8
24 https://doi.org/10.1034/j.1600-0501.2001.012003207.x
25 https://doi.org/10.1034/j.1600-0501.2002.130107.x
26 https://doi.org/10.1034/j.1600-0501.2003.110812.x
27 https://doi.org/10.1054/ijom.2000.0024
28 https://doi.org/10.1097/01.id.0000217790.68814.1e
29 https://doi.org/10.1109/tbme.2010.2040278
30 https://doi.org/10.1109/tbme.2014.2301191
31 https://doi.org/10.1109/tbme.2017.2771356
32 https://doi.org/10.1109/tmi.2009.2024208
33 https://doi.org/10.1109/tpami.1987.4767965
34 https://doi.org/10.1111/cid.12189
35 https://doi.org/10.1111/clr.12414
36 https://doi.org/10.1111/j.1600-0501.2004.01058.x
37 https://doi.org/10.1111/j.1600-0501.2005.01153.x
38 https://doi.org/10.4103/2155-8213.140606
39 schema:datePublished 2019-01
40 schema:datePublishedReg 2019-01-01
41 schema:description It is challenging to achieve high implant accuracy in dental implant placement, because high risk tissues need to be avoided. In this study, we present an augmented reality (AR) surgical navigation with an accurate cone beam computed tomography (CBCT)-patient registration method to provide clinically desired dental implant accuracy. A registration device is used for registration between preoperative data and patient outside the patient's mouth. After registration, the registration device is worn on the patient's teeth for tracking the patient. Naked-eye 3D images of the planning path and the mandibular nerve are superimposed onto the patient in situ to form an AR scene. Simultaneously, a 3D image of the drill is overlaid accurately on the real one to guide the implant procedure. Finally, implant accuracy is evaluated postoperatively. A model experiment was performed by an experienced dentist. Totally, ten parallel pins were inserted into five 3D-printed mandible models guided by our AR navigation method and through the dentist's experience, respectively. AR-guided dental implant placement showed better results than the dentist's experience (mean target error = 1.25 mm vs. 1.63 mm; mean angle error = 4.03° vs. 6.10°). Experimental results indicate that the proposed method is expected to be applied in the clinic. Graphical abstract ᅟ.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N96ff47fb6d13441585bb95ae3dcf212c
46 N97f45f230f3b4bf1a651578e34849bf2
47 sg:journal.1005585
48 schema:name Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement
49 schema:pagination 47-57
50 schema:productId N54079ad390be4e878c0362d1c83ff2ca
51 N5522760e2ea94abdbc374a515fb0ae1b
52 N686c660f3f8a461c967ccca78289a6f8
53 N7aac6fbb8fb247afbf5c5dcce603dcdf
54 Ncdf91bcbd01d4d82b5da86c12d1dd8e7
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105251449
56 https://doi.org/10.1007/s11517-018-1861-9
57 schema:sdDatePublished 2019-04-11T12:13
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nde40e2c6ca1d4d489cf1b61ef6e485c2
60 schema:url https://link.springer.com/10.1007%2Fs11517-018-1861-9
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0f8342193a394cb49cde1c31ec3d5d2d rdf:first sg:person.013100622717.70
65 rdf:rest Nb8d17b34f3b44707b8a3e74000c03023
66 N2105f0df337e4db9809c79763367cb48 rdf:first sg:person.0644131203.48
67 rdf:rest N9c3314f2e32747f0bff7f3c35a92b8f8
68 N24c91756cc8b4c448fceec99dba4a30c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Cone-Beam Computed Tomography
70 rdf:type schema:DefinedTerm
71 N26c7830da5c24b1d8b07495a2674469a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Imaging, Three-Dimensional
73 rdf:type schema:DefinedTerm
74 N282d646a14294ed6b7b5b577ae51ef03 rdf:first sg:person.014374347327.32
75 rdf:rest Nbfb491de53ab49ed821de3f6abac6cd5
76 N31a7b85b0a014faca8c99650d9421050 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N3fa3f97a677e4ae2a1a67f779f403a7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Dental Implants
81 rdf:type schema:DefinedTerm
82 N54079ad390be4e878c0362d1c83ff2ca schema:name nlm_unique_id
83 schema:value 7704869
84 rdf:type schema:PropertyValue
85 N5522760e2ea94abdbc374a515fb0ae1b schema:name doi
86 schema:value 10.1007/s11517-018-1861-9
87 rdf:type schema:PropertyValue
88 N62c6fee69b274c329e12aeb49af77b8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Surgery, Computer-Assisted
90 rdf:type schema:DefinedTerm
91 N686c660f3f8a461c967ccca78289a6f8 schema:name readcube_id
92 schema:value 8121a5fab223263be2a802a8de711aaa2b99aa191ed798d3636bd16b09e6e8e9
93 rdf:type schema:PropertyValue
94 N7aac6fbb8fb247afbf5c5dcce603dcdf schema:name dimensions_id
95 schema:value pub.1105251449
96 rdf:type schema:PropertyValue
97 N96ff47fb6d13441585bb95ae3dcf212c schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N97f45f230f3b4bf1a651578e34849bf2 schema:volumeNumber 57
100 rdf:type schema:PublicationVolume
101 N9c3314f2e32747f0bff7f3c35a92b8f8 rdf:first sg:person.013365101460.01
102 rdf:rest N282d646a14294ed6b7b5b577ae51ef03
103 Na1f67b3d3f7640b69f01eeccf92feb74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Mandible
105 rdf:type schema:DefinedTerm
106 Nb1cb660cdc13457289e199aef130b7ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Calibration
108 rdf:type schema:DefinedTerm
109 Nb8d17b34f3b44707b8a3e74000c03023 rdf:first sg:person.01150424033.84
110 rdf:rest rdf:nil
111 Nbfb491de53ab49ed821de3f6abac6cd5 rdf:first sg:person.014527442744.49
112 rdf:rest Ne6c28bae4f6a4cc1802f5886f2749089
113 Ncdf91bcbd01d4d82b5da86c12d1dd8e7 schema:name pubmed_id
114 schema:value 29967935
115 rdf:type schema:PropertyValue
116 Nde40e2c6ca1d4d489cf1b61ef6e485c2 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Ne6c28bae4f6a4cc1802f5886f2749089 rdf:first sg:person.010372020260.09
119 rdf:rest N0f8342193a394cb49cde1c31ec3d5d2d
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
124 schema:name Artificial Intelligence and Image Processing
125 rdf:type schema:DefinedTerm
126 sg:journal.1005585 schema:issn 1357-5481
127 1741-0444
128 schema:name Medical & Biological Engineering & Computing
129 rdf:type schema:Periodical
130 sg:person.010372020260.09 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
131 schema:familyName Ning
132 schema:givenName Guochen
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372020260.09
134 rdf:type schema:Person
135 sg:person.01150424033.84 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
136 schema:familyName Liao
137 schema:givenName Hongen
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150424033.84
139 rdf:type schema:Person
140 sg:person.013100622717.70 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
141 schema:familyName Zhang
142 schema:givenName Xinran
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100622717.70
144 rdf:type schema:Person
145 sg:person.013365101460.01 schema:affiliation https://www.grid.ac/institutes/grid.414367.3
146 schema:familyName Jiang
147 schema:givenName Weipeng
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365101460.01
149 rdf:type schema:Person
150 sg:person.014374347327.32 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
151 schema:familyName Zhang
152 schema:givenName Boyu
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374347327.32
154 rdf:type schema:Person
155 sg:person.014527442744.49 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
156 schema:familyName Qu
157 schema:givenName Xiaofeng
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527442744.49
159 rdf:type schema:Person
160 sg:person.0644131203.48 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
161 schema:familyName Ma
162 schema:givenName Longfei
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644131203.48
164 rdf:type schema:Person
165 sg:pub.10.1007/978-3-642-23623-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038319149
166 https://doi.org/10.1007/978-3-642-23623-5_11
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11548-017-1652-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091052293
169 https://doi.org/10.1007/s11548-017-1652-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/s12880-015-0089-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037578129
172 https://doi.org/10.1186/s12880-015-0089-5
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1077925470 schema:CreativeWork
175 https://doi.org/10.1002/rcs.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020980202
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijom.2004.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026990569
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jcms.2014.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028446985
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.joms.2003.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023116581
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.joms.2011.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010053909
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.joms.2015.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021229675
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.msec.2016.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041912460
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.pnsc.2014.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044030640
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0022-3913(10)60072-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038069202
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1034/j.1600-0501.2001.012003207.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038203886
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1034/j.1600-0501.2002.130107.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006910093
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1034/j.1600-0501.2003.110812.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024426566
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1054/ijom.2000.0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016257714
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/01.id.0000217790.68814.1e schema:sameAs https://app.dimensions.ai/details/publication/pub.1025163765
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tbme.2010.2040278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527946
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tbme.2014.2301191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529494
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tbme.2017.2771356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092606225
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tmi.2009.2024208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695419
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tpami.1987.4767965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742339
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/cid.12189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013526684
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/clr.12414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006039534
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1600-0501.2004.01058.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035162886
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.1600-0501.2005.01153.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051451404
220 rdf:type schema:CreativeWork
221 https://doi.org/10.4103/2155-8213.140606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040086430
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
224 schema:name Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.414367.3 schema:alternateName Beijing Shijitan Hospital
227 schema:name Department of Biomedical Engineering, School of Medicine, Tsinghua University, 100084, Beijing, China
228 Department of Stomatology, Beijing Shijitan Hospital, 100038, Beijing, China
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...