Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-21

AUTHORS

Costanza Simoncini, Krzysztof Jurczuk, Daniel Reska, Simon Esneault, Jean-Claude Nunes, Jean-Jacques Bellanger, Hervé Saint-Jalmes, Yan Rolland, Pierre-Antoine Eliat, Johanne Bézy-Wendling, Marek Kretowski

ABSTRACT

Selective internal radiation therapy (SIRT) using Yttrium-90 loaded glass microspheres injected in the hepatic artery is an emerging, minimally invasive therapy of liver cancer. A personalized intervention can lead to high concentration dose in the tumor, while sparing the surrounding parenchyma. We propose a computational model for patient-specific simulation of entire hepatic arterial tree, based on liver, tumors, and arteries segmentation on patient’s tomography. Segmentation of hepatic arteries down to a diameter of 0.5 mm is semi-automatically performed on 3D cone-beam CT angiography. The liver and tumors are extracted from CT-scan at portal phase by an active surface method. Once the images are registered through an automatic multimodal registration, extracted data are used to initialize a numerical model simulating liver vascular network. The model creates successive bifurcations from given principal vessels, observing Poiseuille’s and matter conservation laws. Simulations provide a coherent reconstruction of global hepatic arterial tree until vessel diameter of 0.05 mm. Microspheres distribution under simple hypotheses is also quantified, depending on injection site. The patient-specific character of this model may allow a personalized numerical approximation of microspheres final distribution, opening the way to clinical optimization of catheter placement for tumor targeting. More... »

PAGES

515-529

References to SciGraph publications

  • 1972-12. Optimal branching structure of the vascular tree in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2013-11-01. GPU accelerated segmentation and centerline extraction of tubular structures from medical images in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • 2013-04-24. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1998. Multiscale vessel enhancement filtering in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION — MICCAI’98
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11517-017-1703-1

    DOI

    http://dx.doi.org/10.1007/s11517-017-1703-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091280981

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28825200


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Angiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Automation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cone-Beam Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hepatic Artery", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microspheres", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "LTSI, Universit\u00e9 de Rennes 1, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.463996.7", 
              "name": [
                "U 1099, INSERM, Rennes, France", 
                "LTSI, Universit\u00e9 de Rennes 1, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Simoncini", 
            "givenName": "Costanza", 
            "id": "sg:person.0640127556.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640127556.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland", 
              "id": "http://www.grid.ac/institutes/grid.446127.2", 
              "name": [
                "Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jurczuk", 
            "givenName": "Krzysztof", 
            "id": "sg:person.015305015162.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305015162.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland", 
              "id": "http://www.grid.ac/institutes/grid.446127.2", 
              "name": [
                "Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reska", 
            "givenName": "Daniel", 
            "id": "sg:person.015465767152.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015465767152.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Therenva, CCP-CHU Pontchaillou, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.414271.5", 
              "name": [
                "Therenva, CCP-CHU Pontchaillou, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esneault", 
            "givenName": "Simon", 
            "id": "sg:person.0650615553.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650615553.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LTSI, Universit\u00e9 de Rennes 1, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.463996.7", 
              "name": [
                "U 1099, INSERM, Rennes, France", 
                "LTSI, Universit\u00e9 de Rennes 1, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nunes", 
            "givenName": "Jean-Claude", 
            "id": "sg:person.01131703155.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131703155.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LTSI, Universit\u00e9 de Rennes 1, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.463996.7", 
              "name": [
                "U 1099, INSERM, Rennes, France", 
                "LTSI, Universit\u00e9 de Rennes 1, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bellanger", 
            "givenName": "Jean-Jacques", 
            "id": "sg:person.01030510056.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030510056.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre Eug\u00e8ne Marquis, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.417988.b", 
              "name": [
                "U 1099, INSERM, Rennes, France", 
                "LTSI, Universit\u00e9 de Rennes 1, Rennes, France", 
                "Centre Eug\u00e8ne Marquis, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saint-Jalmes", 
            "givenName": "Herv\u00e9", 
            "id": "sg:person.01313601140.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313601140.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre Eug\u00e8ne Marquis, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.417988.b", 
              "name": [
                "U 1099, INSERM, Rennes, France", 
                "LTSI, Universit\u00e9 de Rennes 1, Rennes, France", 
                "Centre Eug\u00e8ne Marquis, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rolland", 
            "givenName": "Yan", 
            "id": "sg:person.0641627157.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641627157.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UMS 018, INSERM, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.7429.8", 
              "name": [
                "PRISM, Universit\u00e9 de Rennes 1, Rennes, France", 
                "Biosit UMS 3480, CNRS, Rennes, France", 
                "UMS 018, INSERM, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eliat", 
            "givenName": "Pierre-Antoine", 
            "id": "sg:person.0641301471.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641301471.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LTSI, Universit\u00e9 de Rennes 1, Rennes, France", 
              "id": "http://www.grid.ac/institutes/grid.463996.7", 
              "name": [
                "U 1099, INSERM, Rennes, France", 
                "LTSI, Universit\u00e9 de Rennes 1, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "B\u00e9zy-Wendling", 
            "givenName": "Johanne", 
            "id": "sg:person.0767153773.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767153773.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland", 
              "id": "http://www.grid.ac/institutes/grid.446127.2", 
              "name": [
                "Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kretowski", 
            "givenName": "Marek", 
            "id": "sg:person.010273774732.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010273774732.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0056195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020734805", 
              "https://doi.org/10.1007/bfb0056195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-013-0956-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011502103", 
              "https://doi.org/10.1007/s11548-013-0956-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02476705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016841189", 
              "https://doi.org/10.1007/bf02476705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2395-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029028591", 
              "https://doi.org/10.1007/s00259-013-2395-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-21", 
        "datePublishedReg": "2017-08-21", 
        "description": "Selective internal radiation therapy (SIRT) using Yttrium-90 loaded glass microspheres injected in the hepatic artery is an emerging, minimally invasive therapy of liver cancer. A personalized intervention can lead to high concentration dose in the tumor, while sparing the surrounding parenchyma. We propose a computational model for patient-specific simulation of entire hepatic arterial tree, based on liver, tumors, and arteries segmentation on patient\u2019s tomography. Segmentation of hepatic arteries down to a diameter of 0.5 mm is semi-automatically performed on 3D cone-beam CT angiography. The liver and tumors are extracted from CT-scan at portal phase by an active surface method. Once the images are registered through an automatic multimodal registration, extracted data are used to initialize a numerical model simulating liver vascular network. The model creates successive bifurcations from given principal vessels, observing Poiseuille\u2019s and matter conservation laws. Simulations provide a coherent reconstruction of global hepatic arterial tree until vessel diameter of 0.05 mm. Microspheres distribution under simple hypotheses is also quantified, depending on injection site. The patient-specific character of this model may allow a personalized numerical approximation of microspheres final distribution, opening the way to clinical optimization of catheter placement for tumor targeting.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11517-017-1703-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1005585", 
            "issn": [
              "1357-5481", 
              "1741-0444"
            ], 
            "name": "Medical & Biological Engineering & Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "56"
          }
        ], 
        "keywords": [
          "patient-specific simulations", 
          "numerical model", 
          "glass microspheres", 
          "surface method", 
          "distribution optimization", 
          "liver vascular network", 
          "successive bifurcations", 
          "simulations", 
          "computational model", 
          "matter conservation laws", 
          "optimization", 
          "Poiseuille", 
          "final distribution", 
          "hepatic arterial tree", 
          "diameter", 
          "active surface method", 
          "numerical approximation", 
          "microspheres", 
          "model", 
          "conservation laws", 
          "modeling", 
          "coherent reconstruction", 
          "distribution", 
          "multimodal registration", 
          "microsphere distribution", 
          "phase", 
          "vascular network", 
          "high concentration dose", 
          "arterial tree", 
          "principal vessels", 
          "method", 
          "cone-beam CT angiography", 
          "law", 
          "images", 
          "segmentation", 
          "approximation", 
          "bifurcation", 
          "network", 
          "vessels", 
          "reconstruction", 
          "artery segmentation", 
          "placement", 
          "tomography", 
          "registration", 
          "way", 
          "data", 
          "invasive therapy", 
          "character", 
          "simple hypothesis", 
          "clinical optimization", 
          "vessel diameter", 
          "sites", 
          "CT-scan", 
          "injection site", 
          "trees", 
          "protocol", 
          "tumor targeting", 
          "selective internal radiation therapy", 
          "internal radiation therapy", 
          "artery", 
          "concentration dose", 
          "hypothesis", 
          "dose", 
          "targeting", 
          "CT angiography", 
          "radiation therapy", 
          "portal phase", 
          "catheter placement", 
          "hepatic artery", 
          "angiography", 
          "parenchyma", 
          "intervention", 
          "therapy", 
          "liver cancer", 
          "tumors", 
          "liver", 
          "cancer", 
          "Yttrium-90 loaded glass microspheres", 
          "loaded glass microspheres", 
          "entire hepatic arterial tree", 
          "patient\u2019s tomography", 
          "automatic multimodal registration", 
          "global hepatic arterial tree", 
          "patient-specific character", 
          "personalized numerical approximation", 
          "microspheres final distribution", 
          "patient-specific hepatic arterial modeling", 
          "hepatic arterial modeling", 
          "arterial modeling", 
          "microspheres distribution optimization", 
          "SIRT protocol"
        ], 
        "name": "Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol", 
        "pagination": "515-529", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091280981"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11517-017-1703-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28825200"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11517-017-1703-1", 
          "https://app.dimensions.ai/details/publication/pub.1091280981"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_720.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11517-017-1703-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1703-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1703-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1703-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1703-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    308 TRIPLES      22 PREDICATES      134 URIs      121 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11517-017-1703-1 schema:about N181f5767179a4ebdac169b19586710a5
    2 N1a0288601dc14c62afc38aa3b584e11a
    3 N1bfe731950c6403d9de8f00948659f15
    4 N2a85e9d31679475f94ec36983488bdec
    5 N4c875f578b2341e1aec41a1fba6c2307
    6 N5fe0cc19106349adaac2e045eca7d5dc
    7 N7169adfc8c5743969aa2f072853547f4
    8 N8f865018a8ec45f2aec1529188860edf
    9 Na4654836dc42405d95febcddb105c59a
    10 Na63a6509f7804001827f99e49bafa374
    11 Nad9a566872cb4d6a8c52d4a9095239af
    12 Nf19ae0eeacff491497dace1301d3d276
    13 anzsrc-for:09
    14 anzsrc-for:0903
    15 anzsrc-for:0906
    16 schema:author Nbc695f4f800e496387f5f9b5ac2a9adb
    17 schema:citation sg:pub.10.1007/bf02476705
    18 sg:pub.10.1007/bfb0056195
    19 sg:pub.10.1007/s00259-013-2395-x
    20 sg:pub.10.1007/s11548-013-0956-x
    21 schema:datePublished 2017-08-21
    22 schema:datePublishedReg 2017-08-21
    23 schema:description Selective internal radiation therapy (SIRT) using Yttrium-90 loaded glass microspheres injected in the hepatic artery is an emerging, minimally invasive therapy of liver cancer. A personalized intervention can lead to high concentration dose in the tumor, while sparing the surrounding parenchyma. We propose a computational model for patient-specific simulation of entire hepatic arterial tree, based on liver, tumors, and arteries segmentation on patient’s tomography. Segmentation of hepatic arteries down to a diameter of 0.5 mm is semi-automatically performed on 3D cone-beam CT angiography. The liver and tumors are extracted from CT-scan at portal phase by an active surface method. Once the images are registered through an automatic multimodal registration, extracted data are used to initialize a numerical model simulating liver vascular network. The model creates successive bifurcations from given principal vessels, observing Poiseuille’s and matter conservation laws. Simulations provide a coherent reconstruction of global hepatic arterial tree until vessel diameter of 0.05 mm. Microspheres distribution under simple hypotheses is also quantified, depending on injection site. The patient-specific character of this model may allow a personalized numerical approximation of microspheres final distribution, opening the way to clinical optimization of catheter placement for tumor targeting.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N49ffd49c7f804964bf534b5608d952b5
    28 Nbf84ec3197c242548e1119f840c7d9c4
    29 sg:journal.1005585
    30 schema:keywords CT angiography
    31 CT-scan
    32 Poiseuille
    33 SIRT protocol
    34 Yttrium-90 loaded glass microspheres
    35 active surface method
    36 angiography
    37 approximation
    38 arterial modeling
    39 arterial tree
    40 artery
    41 artery segmentation
    42 automatic multimodal registration
    43 bifurcation
    44 cancer
    45 catheter placement
    46 character
    47 clinical optimization
    48 coherent reconstruction
    49 computational model
    50 concentration dose
    51 cone-beam CT angiography
    52 conservation laws
    53 data
    54 diameter
    55 distribution
    56 distribution optimization
    57 dose
    58 entire hepatic arterial tree
    59 final distribution
    60 glass microspheres
    61 global hepatic arterial tree
    62 hepatic arterial modeling
    63 hepatic arterial tree
    64 hepatic artery
    65 high concentration dose
    66 hypothesis
    67 images
    68 injection site
    69 internal radiation therapy
    70 intervention
    71 invasive therapy
    72 law
    73 liver
    74 liver cancer
    75 liver vascular network
    76 loaded glass microspheres
    77 matter conservation laws
    78 method
    79 microsphere distribution
    80 microspheres
    81 microspheres distribution optimization
    82 microspheres final distribution
    83 model
    84 modeling
    85 multimodal registration
    86 network
    87 numerical approximation
    88 numerical model
    89 optimization
    90 parenchyma
    91 patient-specific character
    92 patient-specific hepatic arterial modeling
    93 patient-specific simulations
    94 patient’s tomography
    95 personalized numerical approximation
    96 phase
    97 placement
    98 portal phase
    99 principal vessels
    100 protocol
    101 radiation therapy
    102 reconstruction
    103 registration
    104 segmentation
    105 selective internal radiation therapy
    106 simple hypothesis
    107 simulations
    108 sites
    109 successive bifurcations
    110 surface method
    111 targeting
    112 therapy
    113 tomography
    114 trees
    115 tumor targeting
    116 tumors
    117 vascular network
    118 vessel diameter
    119 vessels
    120 way
    121 schema:name Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol
    122 schema:pagination 515-529
    123 schema:productId N7031186454bf4ba3a3238d1dbd4e2720
    124 N9c24c67bfe884f7c814596878ef8fd34
    125 Nafe40b7e66dd4cda9ef7b0020bae9283
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091280981
    127 https://doi.org/10.1007/s11517-017-1703-1
    128 schema:sdDatePublished 2021-12-01T19:37
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher Nd60151e63388435ca37371c6aef8cdd8
    131 schema:url https://doi.org/10.1007/s11517-017-1703-1
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N0c9c99ea6cd44bd78f0fbf1ad5bb72bd rdf:first sg:person.0641301471.49
    136 rdf:rest Ne0e034e18c1e419ea5258552cd646b61
    137 N181f5767179a4ebdac169b19586710a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Liver
    139 rdf:type schema:DefinedTerm
    140 N1a0288601dc14c62afc38aa3b584e11a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Liver Neoplasms
    142 rdf:type schema:DefinedTerm
    143 N1bfe731950c6403d9de8f00948659f15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Microspheres
    145 rdf:type schema:DefinedTerm
    146 N2a85e9d31679475f94ec36983488bdec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Angiography
    148 rdf:type schema:DefinedTerm
    149 N49ffd49c7f804964bf534b5608d952b5 schema:volumeNumber 56
    150 rdf:type schema:PublicationVolume
    151 N4c875f578b2341e1aec41a1fba6c2307 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Humans
    153 rdf:type schema:DefinedTerm
    154 N5fe0cc19106349adaac2e045eca7d5dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Reproducibility of Results
    156 rdf:type schema:DefinedTerm
    157 N7031186454bf4ba3a3238d1dbd4e2720 schema:name dimensions_id
    158 schema:value pub.1091280981
    159 rdf:type schema:PropertyValue
    160 N7169adfc8c5743969aa2f072853547f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Computer Simulation
    162 rdf:type schema:DefinedTerm
    163 N716ecb571c5c498d91b04bb2d9be763e rdf:first sg:person.01030510056.28
    164 rdf:rest N91e41758b57c475dbdd86df8770d1323
    165 N8f865018a8ec45f2aec1529188860edf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Cone-Beam Computed Tomography
    167 rdf:type schema:DefinedTerm
    168 N91e41758b57c475dbdd86df8770d1323 rdf:first sg:person.01313601140.96
    169 rdf:rest Nab31792a606d4377a4d7eac2d556c0c5
    170 N9c24c67bfe884f7c814596878ef8fd34 schema:name pubmed_id
    171 schema:value 28825200
    172 rdf:type schema:PropertyValue
    173 Na077295a41e64cccba88bc70dc0453cb rdf:first sg:person.01131703155.93
    174 rdf:rest N716ecb571c5c498d91b04bb2d9be763e
    175 Na4654836dc42405d95febcddb105c59a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Automation
    177 rdf:type schema:DefinedTerm
    178 Na63a6509f7804001827f99e49bafa374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Models, Biological
    180 rdf:type schema:DefinedTerm
    181 Na6d1b4817208498dbb9ef3a5065167fc rdf:first sg:person.0650615553.58
    182 rdf:rest Na077295a41e64cccba88bc70dc0453cb
    183 Nab31792a606d4377a4d7eac2d556c0c5 rdf:first sg:person.0641627157.44
    184 rdf:rest N0c9c99ea6cd44bd78f0fbf1ad5bb72bd
    185 Nad9a566872cb4d6a8c52d4a9095239af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Image Processing, Computer-Assisted
    187 rdf:type schema:DefinedTerm
    188 Nafe40b7e66dd4cda9ef7b0020bae9283 schema:name doi
    189 schema:value 10.1007/s11517-017-1703-1
    190 rdf:type schema:PropertyValue
    191 Nbc695f4f800e496387f5f9b5ac2a9adb rdf:first sg:person.0640127556.96
    192 rdf:rest Nf51618d6a62449288a05d405c4079c12
    193 Nbf84ec3197c242548e1119f840c7d9c4 schema:issueNumber 3
    194 rdf:type schema:PublicationIssue
    195 Nd60151e63388435ca37371c6aef8cdd8 schema:name Springer Nature - SN SciGraph project
    196 rdf:type schema:Organization
    197 Nda0d176794684ca69fd5233aaafcaec1 rdf:first sg:person.015465767152.71
    198 rdf:rest Na6d1b4817208498dbb9ef3a5065167fc
    199 Ne0e034e18c1e419ea5258552cd646b61 rdf:first sg:person.0767153773.97
    200 rdf:rest Nff426685fff54442b735b033a26b793e
    201 Nf19ae0eeacff491497dace1301d3d276 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Hepatic Artery
    203 rdf:type schema:DefinedTerm
    204 Nf51618d6a62449288a05d405c4079c12 rdf:first sg:person.015305015162.08
    205 rdf:rest Nda0d176794684ca69fd5233aaafcaec1
    206 Nff426685fff54442b735b033a26b793e rdf:first sg:person.010273774732.43
    207 rdf:rest rdf:nil
    208 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    209 schema:name Engineering
    210 rdf:type schema:DefinedTerm
    211 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    212 schema:name Biomedical Engineering
    213 rdf:type schema:DefinedTerm
    214 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Electrical and Electronic Engineering
    216 rdf:type schema:DefinedTerm
    217 sg:journal.1005585 schema:issn 1357-5481
    218 1741-0444
    219 schema:name Medical & Biological Engineering & Computing
    220 schema:publisher Springer Nature
    221 rdf:type schema:Periodical
    222 sg:person.010273774732.43 schema:affiliation grid-institutes:grid.446127.2
    223 schema:familyName Kretowski
    224 schema:givenName Marek
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010273774732.43
    226 rdf:type schema:Person
    227 sg:person.01030510056.28 schema:affiliation grid-institutes:grid.463996.7
    228 schema:familyName Bellanger
    229 schema:givenName Jean-Jacques
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030510056.28
    231 rdf:type schema:Person
    232 sg:person.01131703155.93 schema:affiliation grid-institutes:grid.463996.7
    233 schema:familyName Nunes
    234 schema:givenName Jean-Claude
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131703155.93
    236 rdf:type schema:Person
    237 sg:person.01313601140.96 schema:affiliation grid-institutes:grid.417988.b
    238 schema:familyName Saint-Jalmes
    239 schema:givenName Hervé
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313601140.96
    241 rdf:type schema:Person
    242 sg:person.015305015162.08 schema:affiliation grid-institutes:grid.446127.2
    243 schema:familyName Jurczuk
    244 schema:givenName Krzysztof
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305015162.08
    246 rdf:type schema:Person
    247 sg:person.015465767152.71 schema:affiliation grid-institutes:grid.446127.2
    248 schema:familyName Reska
    249 schema:givenName Daniel
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015465767152.71
    251 rdf:type schema:Person
    252 sg:person.0640127556.96 schema:affiliation grid-institutes:grid.463996.7
    253 schema:familyName Simoncini
    254 schema:givenName Costanza
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640127556.96
    256 rdf:type schema:Person
    257 sg:person.0641301471.49 schema:affiliation grid-institutes:grid.7429.8
    258 schema:familyName Eliat
    259 schema:givenName Pierre-Antoine
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641301471.49
    261 rdf:type schema:Person
    262 sg:person.0641627157.44 schema:affiliation grid-institutes:grid.417988.b
    263 schema:familyName Rolland
    264 schema:givenName Yan
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641627157.44
    266 rdf:type schema:Person
    267 sg:person.0650615553.58 schema:affiliation grid-institutes:grid.414271.5
    268 schema:familyName Esneault
    269 schema:givenName Simon
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650615553.58
    271 rdf:type schema:Person
    272 sg:person.0767153773.97 schema:affiliation grid-institutes:grid.463996.7
    273 schema:familyName Bézy-Wendling
    274 schema:givenName Johanne
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767153773.97
    276 rdf:type schema:Person
    277 sg:pub.10.1007/bf02476705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016841189
    278 https://doi.org/10.1007/bf02476705
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/bfb0056195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020734805
    281 https://doi.org/10.1007/bfb0056195
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s00259-013-2395-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029028591
    284 https://doi.org/10.1007/s00259-013-2395-x
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s11548-013-0956-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011502103
    287 https://doi.org/10.1007/s11548-013-0956-x
    288 rdf:type schema:CreativeWork
    289 grid-institutes:grid.414271.5 schema:alternateName Therenva, CCP-CHU Pontchaillou, Rennes, France
    290 schema:name Therenva, CCP-CHU Pontchaillou, Rennes, France
    291 rdf:type schema:Organization
    292 grid-institutes:grid.417988.b schema:alternateName Centre Eugène Marquis, Rennes, France
    293 schema:name Centre Eugène Marquis, Rennes, France
    294 LTSI, Université de Rennes 1, Rennes, France
    295 U 1099, INSERM, Rennes, France
    296 rdf:type schema:Organization
    297 grid-institutes:grid.446127.2 schema:alternateName Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
    298 schema:name Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
    299 rdf:type schema:Organization
    300 grid-institutes:grid.463996.7 schema:alternateName LTSI, Université de Rennes 1, Rennes, France
    301 schema:name LTSI, Université de Rennes 1, Rennes, France
    302 U 1099, INSERM, Rennes, France
    303 rdf:type schema:Organization
    304 grid-institutes:grid.7429.8 schema:alternateName UMS 018, INSERM, Rennes, France
    305 schema:name Biosit UMS 3480, CNRS, Rennes, France
    306 PRISM, Université de Rennes 1, Rennes, France
    307 UMS 018, INSERM, Rennes, France
    308 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...