Enhanced visualization of the retinal vasculature using depth information in OCT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Joaquim de Moura, Jorge Novo, Pablo Charlón, Noelia Barreira, Marcos Ortega

ABSTRACT

Retinal vessel tree extraction is a crucial step for analyzing the microcirculation, a frequently needed process in the study of relevant diseases. To date, this has normally been done by using 2D image capture paradigms, offering a restricted visualization of the real layout of the retinal vasculature. In this work, we propose a new approach that automatically segments and reconstructs the 3D retinal vessel tree by combining near-infrared reflectance retinography information with Optical Coherence Tomography (OCT) sections. Our proposal identifies the vessels, estimates their calibers, and obtains the depth at all the positions of the entire vessel tree, thereby enabling the reconstruction of the 3D layout of the complete arteriovenous tree for subsequent analysis. The method was tested using 991 OCT images combined with their corresponding near-infrared reflectance retinography. The different stages of the methodology were validated using the opinion of an expert as a reference. The tests offered accurate results, showing coherent reconstructions of the 3D vasculature that can be analyzed in the diagnosis of relevant diseases affecting the retinal microcirculation, such as hypertension or diabetes, among others. More... »

PAGES

2209-2225

References to SciGraph publications

  • 2015-01. A self-adaptive matched filter for retinal blood vessel detection in MACHINE VISION AND APPLICATIONS
  • 2009-04. Detection of Retinal Blood Vessels Based on Nonlinear Projections in JOURNAL OF SIGNAL PROCESSING SYSTEMS
  • 1998. Multiscale vessel enhancement filtering in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION — MICCAI’98
  • 2015-12. A review of optical coherence tomography angiography (OCTA) in INTERNATIONAL JOURNAL OF RETINA AND VITREOUS
  • 2014-10. Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features in MACHINE VISION AND APPLICATIONS
  • 2009. 3D OCT retinal vessel segmentation based on boosting learning in WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, SEPTEMBER 7 - 12, 2009, MUNICH, GERMANY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11517-017-1660-8

    DOI

    http://dx.doi.org/10.1007/s11517-017-1660-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086067519

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28623452


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retinal Vessels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Optical Coherence", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Department of Computer Science, University of A Coru\u00f1a, 15071, A Coru\u00f1a, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Moura", 
            "givenName": "Joaquim", 
            "id": "sg:person.010541701153.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541701153.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Department of Computer Science, University of A Coru\u00f1a, 15071, A Coru\u00f1a, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novo", 
            "givenName": "Jorge", 
            "id": "sg:person.01263222603.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263222603.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Instituto Oftalmol\u00f3gico Victoria de Rojas, A Coru\u00f1a, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Charl\u00f3n", 
            "givenName": "Pablo", 
            "id": "sg:person.01110626070.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110626070.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Department of Computer Science, University of A Coru\u00f1a, 15071, A Coru\u00f1a, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barreira", 
            "givenName": "Noelia", 
            "id": "sg:person.0740074707.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740074707.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Department of Computer Science, University of A Coru\u00f1a, 15071, A Coru\u00f1a, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ortega", 
            "givenName": "Marcos", 
            "id": "sg:person.0665112667.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665112667.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/ana.21129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000173199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ana.21129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000173199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-7580.2005.00395.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002971901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40942-015-0005-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004730630", 
              "https://doi.org/10.1186/s40942-015-0005-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40942-015-0005-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004730630", 
              "https://doi.org/10.1186/s40942-015-0005-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2015.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005767802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ophtha.2006.03.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005937457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archinte.166.21.2388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007865756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.772680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009818845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03891-4_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011075348", 
              "https://doi.org/10.1007/978-3-642-03891-4_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2014.12.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015321433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-014-0636-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016096118", 
              "https://doi.org/10.1007/s00138-014-0636-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2015.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018087001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bjo.83.8.902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019133685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1167/iovs.07-1450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020307570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0056195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020734805", 
              "https://doi.org/10.1007/bfb0056195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/boe.3.001478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021707887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2015.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024053684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-014-0638-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025927762", 
              "https://doi.org/10.1007/s00138-014-0638-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2012.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036409622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2012.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037933696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/dc07-1528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037958634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2009.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039313825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1999.0812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041027836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2010.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041214992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2015.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045230839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11265-008-0179-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045252877", 
              "https://doi.org/10.1007/s11265-008-0179-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.hyp.0000140772.40322.ec", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049507420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.hyp.0000140772.40322.ec", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049507420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2003.819920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2004.825627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2006.879955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2006.879967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2012.2191302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2015.2457891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2003.1159954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-3768.2012.2712.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061954632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17762/ijritcc2321-8169.150306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068452522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3233/ifs-151812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071127125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4156/aiss.vol4.issue3.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072275386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2011.5872488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093871146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icgccee.2014.6922270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094448296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17077/omia.1002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096915908"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "Retinal vessel tree extraction is a crucial step for analyzing the microcirculation, a frequently needed process in the study of relevant diseases. To date, this has normally been done by using 2D image capture paradigms, offering a restricted visualization of the real layout of the retinal vasculature. In this work, we propose a new approach that automatically segments and reconstructs the 3D retinal vessel tree by combining near-infrared reflectance retinography information with Optical Coherence Tomography (OCT) sections. Our proposal identifies the vessels, estimates their calibers, and obtains the depth at all the positions of the entire vessel tree, thereby enabling the reconstruction of the 3D layout of the complete arteriovenous tree for subsequent analysis. The method was tested using 991 OCT images combined with their corresponding near-infrared reflectance retinography. The different stages of the methodology were validated using the opinion of an expert as a reference. The tests offered accurate results, showing coherent reconstructions of the 3D vasculature that can be analyzed in the diagnosis of relevant diseases affecting the retinal microcirculation, such as hypertension or diabetes, among others.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11517-017-1660-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3737858", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1005585", 
            "issn": [
              "1357-5481", 
              "1741-0444"
            ], 
            "name": "Medical & Biological Engineering & Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "name": "Enhanced visualization of the retinal vasculature using depth information in OCT", 
        "pagination": "2209-2225", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f8c36c6f5d379242934f11267c64895a0cd5dec29f95d5a8143bd26e0e0f5548"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28623452"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7704869"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11517-017-1660-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086067519"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11517-017-1660-8", 
          "https://app.dimensions.ai/details/publication/pub.1086067519"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113644_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11517-017-1660-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1660-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1660-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1660-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-017-1660-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    243 TRIPLES      21 PREDICATES      73 URIs      25 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11517-017-1660-8 schema:about N0e07844ae41b4cb2a4c6731adaf5bb00
    2 N3165e5a709254882a4b0ef0ae76c29cd
    3 N586982e1837142f789d48301753cdec6
    4 N74ac8b9f324445748d68a4b4f7e0c754
    5 anzsrc-for:08
    6 anzsrc-for:0801
    7 schema:author Nf35e4ae7c4f34723a1cebd3bf9c72cbf
    8 schema:citation sg:pub.10.1007/978-3-642-03891-4_48
    9 sg:pub.10.1007/bfb0056195
    10 sg:pub.10.1007/s00138-014-0636-z
    11 sg:pub.10.1007/s00138-014-0638-x
    12 sg:pub.10.1007/s11265-008-0179-5
    13 sg:pub.10.1186/s40942-015-0005-8
    14 https://doi.org/10.1001/archinte.166.21.2388
    15 https://doi.org/10.1002/ana.21129
    16 https://doi.org/10.1006/cviu.1999.0812
    17 https://doi.org/10.1016/j.bspc.2012.05.005
    18 https://doi.org/10.1016/j.cmpb.2010.06.002
    19 https://doi.org/10.1016/j.cmpb.2012.03.009
    20 https://doi.org/10.1016/j.cmpb.2015.01.004
    21 https://doi.org/10.1016/j.compbiomed.2014.12.016
    22 https://doi.org/10.1016/j.compbiomed.2015.09.008
    23 https://doi.org/10.1016/j.jvlc.2009.01.006
    24 https://doi.org/10.1016/j.media.2015.09.002
    25 https://doi.org/10.1016/j.media.2015.12.003
    26 https://doi.org/10.1016/j.ophtha.2006.03.028
    27 https://doi.org/10.1109/icgccee.2014.6922270
    28 https://doi.org/10.1109/isbi.2011.5872488
    29 https://doi.org/10.1109/tmi.2003.819920
    30 https://doi.org/10.1109/tmi.2004.825627
    31 https://doi.org/10.1109/tmi.2006.879955
    32 https://doi.org/10.1109/tmi.2006.879967
    33 https://doi.org/10.1109/tmi.2012.2191302
    34 https://doi.org/10.1109/tmi.2015.2457891
    35 https://doi.org/10.1109/tpami.2003.1159954
    36 https://doi.org/10.1111/j.1469-7580.2005.00395.x
    37 https://doi.org/10.1111/j.1755-3768.2012.2712.x
    38 https://doi.org/10.1117/12.772680
    39 https://doi.org/10.1136/bjo.83.8.902
    40 https://doi.org/10.1161/01.hyp.0000140772.40322.ec
    41 https://doi.org/10.1167/iovs.07-1450
    42 https://doi.org/10.1364/boe.3.001478
    43 https://doi.org/10.17077/omia.1002
    44 https://doi.org/10.17762/ijritcc2321-8169.150306
    45 https://doi.org/10.2337/dc07-1528
    46 https://doi.org/10.3233/ifs-151812
    47 https://doi.org/10.4156/aiss.vol4.issue3.32
    48 schema:datePublished 2017-12
    49 schema:datePublishedReg 2017-12-01
    50 schema:description Retinal vessel tree extraction is a crucial step for analyzing the microcirculation, a frequently needed process in the study of relevant diseases. To date, this has normally been done by using 2D image capture paradigms, offering a restricted visualization of the real layout of the retinal vasculature. In this work, we propose a new approach that automatically segments and reconstructs the 3D retinal vessel tree by combining near-infrared reflectance retinography information with Optical Coherence Tomography (OCT) sections. Our proposal identifies the vessels, estimates their calibers, and obtains the depth at all the positions of the entire vessel tree, thereby enabling the reconstruction of the 3D layout of the complete arteriovenous tree for subsequent analysis. The method was tested using 991 OCT images combined with their corresponding near-infrared reflectance retinography. The different stages of the methodology were validated using the opinion of an expert as a reference. The tests offered accurate results, showing coherent reconstructions of the 3D vasculature that can be analyzed in the diagnosis of relevant diseases affecting the retinal microcirculation, such as hypertension or diabetes, among others.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree false
    54 schema:isPartOf N3826bd11aef1452dab4cd79409592292
    55 Nfa62959f16df491fa05832035847f5b8
    56 sg:journal.1005585
    57 schema:name Enhanced visualization of the retinal vasculature using depth information in OCT
    58 schema:pagination 2209-2225
    59 schema:productId N2e21bb38331a4165a8220cb20da7b834
    60 N30ac44d84b024f43bb67a55c11dda3ab
    61 N83c273b45ebd496a8fad0d74097ee924
    62 Nc5bb7e6b4fd747b4b03e365f3f08e819
    63 Nef5b6083ffa84e408549eb15c8151f43
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086067519
    65 https://doi.org/10.1007/s11517-017-1660-8
    66 schema:sdDatePublished 2019-04-11T10:30
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Ndadcc9f2f5664474ad80810512cdea31
    69 schema:url https://link.springer.com/10.1007%2Fs11517-017-1660-8
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N0e07844ae41b4cb2a4c6731adaf5bb00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Humans
    75 rdf:type schema:DefinedTerm
    76 N2e21bb38331a4165a8220cb20da7b834 schema:name readcube_id
    77 schema:value f8c36c6f5d379242934f11267c64895a0cd5dec29f95d5a8143bd26e0e0f5548
    78 rdf:type schema:PropertyValue
    79 N30ac44d84b024f43bb67a55c11dda3ab schema:name dimensions_id
    80 schema:value pub.1086067519
    81 rdf:type schema:PropertyValue
    82 N3165e5a709254882a4b0ef0ae76c29cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Image Interpretation, Computer-Assisted
    84 rdf:type schema:DefinedTerm
    85 N3826bd11aef1452dab4cd79409592292 schema:issueNumber 12
    86 rdf:type schema:PublicationIssue
    87 N41e758111482476c843d10442c26a1c8 rdf:first sg:person.01110626070.79
    88 rdf:rest N5baf2b27fb3e43edafae98dbef051e56
    89 N586982e1837142f789d48301753cdec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Retinal Vessels
    91 rdf:type schema:DefinedTerm
    92 N5baf2b27fb3e43edafae98dbef051e56 rdf:first sg:person.0740074707.86
    93 rdf:rest Naea7b977f9d04c7686ecccb6494245af
    94 N74ac8b9f324445748d68a4b4f7e0c754 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Tomography, Optical Coherence
    96 rdf:type schema:DefinedTerm
    97 N83c273b45ebd496a8fad0d74097ee924 schema:name pubmed_id
    98 schema:value 28623452
    99 rdf:type schema:PropertyValue
    100 Naea7b977f9d04c7686ecccb6494245af rdf:first sg:person.0665112667.10
    101 rdf:rest rdf:nil
    102 Nbcf557119c5b494cbf67a06b82b7150b rdf:first sg:person.01263222603.88
    103 rdf:rest N41e758111482476c843d10442c26a1c8
    104 Nc5bb7e6b4fd747b4b03e365f3f08e819 schema:name nlm_unique_id
    105 schema:value 7704869
    106 rdf:type schema:PropertyValue
    107 Ncd9ad085147b4036af330997a1360b1a schema:name Instituto Oftalmológico Victoria de Rojas, A Coruña, Spain
    108 rdf:type schema:Organization
    109 Ndadcc9f2f5664474ad80810512cdea31 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Nef5b6083ffa84e408549eb15c8151f43 schema:name doi
    112 schema:value 10.1007/s11517-017-1660-8
    113 rdf:type schema:PropertyValue
    114 Nf35e4ae7c4f34723a1cebd3bf9c72cbf rdf:first sg:person.010541701153.05
    115 rdf:rest Nbcf557119c5b494cbf67a06b82b7150b
    116 Nfa62959f16df491fa05832035847f5b8 schema:volumeNumber 55
    117 rdf:type schema:PublicationVolume
    118 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Information and Computing Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Artificial Intelligence and Image Processing
    123 rdf:type schema:DefinedTerm
    124 sg:grant.3737858 http://pending.schema.org/fundedItem sg:pub.10.1007/s11517-017-1660-8
    125 rdf:type schema:MonetaryGrant
    126 sg:journal.1005585 schema:issn 1357-5481
    127 1741-0444
    128 schema:name Medical & Biological Engineering & Computing
    129 rdf:type schema:Periodical
    130 sg:person.010541701153.05 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    131 schema:familyName de Moura
    132 schema:givenName Joaquim
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541701153.05
    134 rdf:type schema:Person
    135 sg:person.01110626070.79 schema:affiliation Ncd9ad085147b4036af330997a1360b1a
    136 schema:familyName Charlón
    137 schema:givenName Pablo
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110626070.79
    139 rdf:type schema:Person
    140 sg:person.01263222603.88 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    141 schema:familyName Novo
    142 schema:givenName Jorge
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263222603.88
    144 rdf:type schema:Person
    145 sg:person.0665112667.10 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    146 schema:familyName Ortega
    147 schema:givenName Marcos
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665112667.10
    149 rdf:type schema:Person
    150 sg:person.0740074707.86 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    151 schema:familyName Barreira
    152 schema:givenName Noelia
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740074707.86
    154 rdf:type schema:Person
    155 sg:pub.10.1007/978-3-642-03891-4_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011075348
    156 https://doi.org/10.1007/978-3-642-03891-4_48
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bfb0056195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020734805
    159 https://doi.org/10.1007/bfb0056195
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00138-014-0636-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016096118
    162 https://doi.org/10.1007/s00138-014-0636-z
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00138-014-0638-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927762
    165 https://doi.org/10.1007/s00138-014-0638-x
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11265-008-0179-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045252877
    168 https://doi.org/10.1007/s11265-008-0179-5
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1186/s40942-015-0005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004730630
    171 https://doi.org/10.1186/s40942-015-0005-8
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1001/archinte.166.21.2388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007865756
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1002/ana.21129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000173199
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1006/cviu.1999.0812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041027836
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.bspc.2012.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037933696
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.cmpb.2010.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041214992
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.cmpb.2012.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036409622
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.cmpb.2015.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005767802
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.compbiomed.2014.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015321433
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.compbiomed.2015.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018087001
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.jvlc.2009.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313825
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.media.2015.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045230839
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.media.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024053684
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.ophtha.2006.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005937457
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1109/icgccee.2014.6922270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094448296
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1109/isbi.2011.5872488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093871146
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1109/tmi.2003.819920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694501
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1109/tmi.2004.825627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694553
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/tmi.2006.879955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694900
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/tmi.2006.879967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694903
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/tmi.2012.2191302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695896
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/tmi.2015.2457891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696571
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1109/tpami.2003.1159954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742475
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1111/j.1469-7580.2005.00395.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002971901
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1111/j.1755-3768.2012.2712.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1061954632
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1117/12.772680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009818845
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1136/bjo.83.8.902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019133685
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1161/01.hyp.0000140772.40322.ec schema:sameAs https://app.dimensions.ai/details/publication/pub.1049507420
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1167/iovs.07-1450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020307570
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1364/boe.3.001478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021707887
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.17077/omia.1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096915908
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.17762/ijritcc2321-8169.150306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068452522
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.2337/dc07-1528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037958634
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.3233/ifs-151812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071127125
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.4156/aiss.vol4.issue3.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072275386
    240 rdf:type schema:CreativeWork
    241 https://www.grid.ac/institutes/grid.8073.c schema:alternateName University of A Coruña
    242 schema:name Department of Computer Science, University of A Coruña, 15071, A Coruña, Spain
    243 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...