Texture- and deformability-based surface recognition by tactile image analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Anwesha Khasnobish, Monalisa Pal, D. N. Tibarewala, Amit Konar, Kunal Pal

ABSTRACT

Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture. More... »

PAGES

1269-1283

References to SciGraph publications

  • 2007-01. Study of discriminant analysis applied to motor imagery bipolar data in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2008-02. Spike sorting based on multi-class support vector machine with superposition resolution in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2011-10. Trends in rehabilitation robotics in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2011-01. Engineering and ethical constraints in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2014-04. Object-shape recognition and 3D reconstruction from tactile sensor images in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11517-016-1464-2

    DOI

    http://dx.doi.org/10.1007/s11517-016-1464-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049865003

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27008211


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nontherapeutic Human Experimentation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Robotics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Support Vector Machine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Touch", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "School of Bioscience and Engineering, Jadavpur University, Raja S.C. Mullick Road, 700032, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khasnobish", 
            "givenName": "Anwesha", 
            "id": "sg:person.01260452574.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Electronics and Telecommunication Engineering, Jadavpur University, Raja S.C. Mullick Road, 700032, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pal", 
            "givenName": "Monalisa", 
            "id": "sg:person.014222544617.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222544617.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "School of Bioscience and Engineering, Jadavpur University, Raja S.C. Mullick Road, 700032, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tibarewala", 
            "givenName": "D. N.", 
            "id": "sg:person.010726132604.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Electronics and Telecommunication Engineering, Jadavpur University, Raja S.C. Mullick Road, 700032, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konar", 
            "givenName": "Amit", 
            "id": "sg:person.01337053064.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Technology Rourkela", 
              "id": "https://www.grid.ac/institutes/grid.444703.0", 
              "name": [
                "Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pal", 
            "givenName": "Kunal", 
            "id": "sg:person.01232273252.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232273252.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11517-011-0836-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005105315", 
              "https://doi.org/10.1007/s11517-011-0836-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-007-0248-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009964467", 
              "https://doi.org/10.1007/s11517-007-0248-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1015330.1015341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011745635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-006-0122-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012290224", 
              "https://doi.org/10.1007/s11517-006-0122-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0957-4158(03)00048-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019438382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0957-4158(03)00048-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019438382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1741-2560/10/2/026014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020537896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2014.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020621457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/scan/nsp052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025307593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2012.07.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039891045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0960-1317/15/5/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040569666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-010-0723-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046946647", 
              "https://doi.org/10.1007/s11517-010-0723-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2008.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048356970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2013.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049327002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-014-1142-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051017411", 
              "https://doi.org/10.1007/s11517-014-1142-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxj035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051189952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2011.2127110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061785246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/ajas.2009.512.517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071453711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/ajassp.2009.512.517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071454861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/ajassp.2011.26.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071455264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icorr.2011.5975397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078507394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iceci.2014.6767376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093943293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2010.5509675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094828676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2012.6386142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094907012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2006.347618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095694100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2006.347618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095694100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511809682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098667572"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08", 
        "datePublishedReg": "2016-08-01", 
        "description": "Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83\u00a0% in 82.60\u00a0ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89\u00a0% in 54.25\u00a0ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78\u00a0% in 53.35\u00a0ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11517-016-1464-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1005585", 
            "issn": [
              "1357-5481", 
              "1741-0444"
            ], 
            "name": "Medical & Biological Engineering & Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "Texture- and deformability-based surface recognition by tactile image analysis", 
        "pagination": "1269-1283", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ed8a3d18da19705054ae3ff0e134bd09b39121e146adeb4b7da64bcebd1fd0dc"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27008211"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7704869"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11517-016-1464-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049865003"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11517-016-1464-2", 
          "https://app.dimensions.ai/details/publication/pub.1049865003"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000524.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11517-016-1464-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-016-1464-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-016-1464-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-016-1464-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-016-1464-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      21 PREDICATES      69 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11517-016-1464-2 schema:about N10b81d171678489d9ca04134e23cfe07
    2 N1421947a2c17499aa84a70e857bf9380
    3 N1c5f06f978664684ac1a827ccb32a61b
    4 N2d3b00dec8d34ec38a54ac9fcda27608
    5 N46eb234a5d154b479acd929c1efae1b5
    6 N71260f1cfc18425684fd48e7c5436bdc
    7 N72ea298a83f548ce94ffeae36b0c43b1
    8 N7b2f11add33f437a8e4334f49390d3a3
    9 N85996f7d4665444b91c7275a17e4b6a7
    10 Nad032d4db8d140baa3abc7187370ef62
    11 Nb73a9d3153d541c784c83ac879ee780f
    12 Nc28d5e615215412fae0078eedbda4761
    13 Nce5b6ce05cdc44bc9873759e01688aed
    14 anzsrc-for:08
    15 anzsrc-for:0801
    16 schema:author N6ae6887a68994c1cb2c48b1b48eb9195
    17 schema:citation sg:pub.10.1007/s11517-006-0122-5
    18 sg:pub.10.1007/s11517-007-0248-0
    19 sg:pub.10.1007/s11517-010-0723-x
    20 sg:pub.10.1007/s11517-011-0836-x
    21 sg:pub.10.1007/s11517-014-1142-1
    22 https://doi.org/10.1016/j.cageo.2008.01.006
    23 https://doi.org/10.1016/j.neucom.2014.05.019
    24 https://doi.org/10.1016/j.robot.2012.07.021
    25 https://doi.org/10.1016/j.robot.2013.11.011
    26 https://doi.org/10.1016/s0957-4158(03)00048-5
    27 https://doi.org/10.1017/cbo9780511809682
    28 https://doi.org/10.1088/0960-1317/15/5/003
    29 https://doi.org/10.1088/1741-2560/10/2/026014
    30 https://doi.org/10.1093/biostatistics/kxj035
    31 https://doi.org/10.1093/scan/nsp052
    32 https://doi.org/10.1109/iceci.2014.6767376
    33 https://doi.org/10.1109/icorr.2011.5975397
    34 https://doi.org/10.1109/iecon.2006.347618
    35 https://doi.org/10.1109/iros.2012.6386142
    36 https://doi.org/10.1109/robot.2010.5509675
    37 https://doi.org/10.1109/tpami.2004.37
    38 https://doi.org/10.1109/tpami.2005.159
    39 https://doi.org/10.1109/tro.2011.2127110
    40 https://doi.org/10.1145/1015330.1015341
    41 https://doi.org/10.3844/ajas.2009.512.517
    42 https://doi.org/10.3844/ajassp.2009.512.517
    43 https://doi.org/10.3844/ajassp.2011.26.32
    44 schema:datePublished 2016-08
    45 schema:datePublishedReg 2016-08-01
    46 schema:description Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N3e52a0edfa8340959deca20255c3c511
    51 N559777fc8ea345d98fd8cfd9e10604f0
    52 sg:journal.1005585
    53 schema:name Texture- and deformability-based surface recognition by tactile image analysis
    54 schema:pagination 1269-1283
    55 schema:productId N06172f67b6f94a299aa46237f16205de
    56 N1100946ae4f94c8bb29ad2ac29164b17
    57 N481c5f224b424743b1d7d2b36d31c6fe
    58 N630fbbbcc7ee4417b2fa84f903d594a6
    59 Naa745f7adb6a47df8a07720465bdd687
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049865003
    61 https://doi.org/10.1007/s11517-016-1464-2
    62 schema:sdDatePublished 2019-04-10T18:23
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N516a73c2051d4b1bbc4df37385b47447
    65 schema:url http://link.springer.com/10.1007%2Fs11517-016-1464-2
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N06172f67b6f94a299aa46237f16205de schema:name pubmed_id
    70 schema:value 27008211
    71 rdf:type schema:PropertyValue
    72 N0c315fe8c9b3408681d222ad3e1ecc88 rdf:first sg:person.014222544617.16
    73 rdf:rest Nde6312c0d73f4f75a8bfd40adf12bdf3
    74 N10b81d171678489d9ca04134e23cfe07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Humans
    76 rdf:type schema:DefinedTerm
    77 N1100946ae4f94c8bb29ad2ac29164b17 schema:name readcube_id
    78 schema:value ed8a3d18da19705054ae3ff0e134bd09b39121e146adeb4b7da64bcebd1fd0dc
    79 rdf:type schema:PropertyValue
    80 N1421947a2c17499aa84a70e857bf9380 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Surface Properties
    82 rdf:type schema:DefinedTerm
    83 N1c5f06f978664684ac1a827ccb32a61b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Adult
    85 rdf:type schema:DefinedTerm
    86 N2d3b00dec8d34ec38a54ac9fcda27608 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Male
    88 rdf:type schema:DefinedTerm
    89 N3e52a0edfa8340959deca20255c3c511 schema:issueNumber 8
    90 rdf:type schema:PublicationIssue
    91 N46eb234a5d154b479acd929c1efae1b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Support Vector Machine
    93 rdf:type schema:DefinedTerm
    94 N481c5f224b424743b1d7d2b36d31c6fe schema:name nlm_unique_id
    95 schema:value 7704869
    96 rdf:type schema:PropertyValue
    97 N516a73c2051d4b1bbc4df37385b47447 schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N559777fc8ea345d98fd8cfd9e10604f0 schema:volumeNumber 54
    100 rdf:type schema:PublicationVolume
    101 N5a4391b6bcfb425e97fa358a4575efe0 rdf:first sg:person.01232273252.28
    102 rdf:rest rdf:nil
    103 N630fbbbcc7ee4417b2fa84f903d594a6 schema:name dimensions_id
    104 schema:value pub.1049865003
    105 rdf:type schema:PropertyValue
    106 N6ae6887a68994c1cb2c48b1b48eb9195 rdf:first sg:person.01260452574.41
    107 rdf:rest N0c315fe8c9b3408681d222ad3e1ecc88
    108 N71260f1cfc18425684fd48e7c5436bdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Robotics
    110 rdf:type schema:DefinedTerm
    111 N72ea298a83f548ce94ffeae36b0c43b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Female
    113 rdf:type schema:DefinedTerm
    114 N7b2f11add33f437a8e4334f49390d3a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Young Adult
    116 rdf:type schema:DefinedTerm
    117 N85996f7d4665444b91c7275a17e4b6a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Arm
    119 rdf:type schema:DefinedTerm
    120 N8c61dec3ec3b461a93175c4164170a96 rdf:first sg:person.01337053064.29
    121 rdf:rest N5a4391b6bcfb425e97fa358a4575efe0
    122 Naa745f7adb6a47df8a07720465bdd687 schema:name doi
    123 schema:value 10.1007/s11517-016-1464-2
    124 rdf:type schema:PropertyValue
    125 Nad032d4db8d140baa3abc7187370ef62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Pattern Recognition, Automated
    127 rdf:type schema:DefinedTerm
    128 Nb73a9d3153d541c784c83ac879ee780f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Image Interpretation, Computer-Assisted
    130 rdf:type schema:DefinedTerm
    131 Nc28d5e615215412fae0078eedbda4761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Touch
    133 rdf:type schema:DefinedTerm
    134 Nce5b6ce05cdc44bc9873759e01688aed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Nontherapeutic Human Experimentation
    136 rdf:type schema:DefinedTerm
    137 Nde6312c0d73f4f75a8bfd40adf12bdf3 rdf:first sg:person.010726132604.03
    138 rdf:rest N8c61dec3ec3b461a93175c4164170a96
    139 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Information and Computing Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Artificial Intelligence and Image Processing
    144 rdf:type schema:DefinedTerm
    145 sg:journal.1005585 schema:issn 1357-5481
    146 1741-0444
    147 schema:name Medical & Biological Engineering & Computing
    148 rdf:type schema:Periodical
    149 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    150 schema:familyName Tibarewala
    151 schema:givenName D. N.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
    153 rdf:type schema:Person
    154 sg:person.01232273252.28 schema:affiliation https://www.grid.ac/institutes/grid.444703.0
    155 schema:familyName Pal
    156 schema:givenName Kunal
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232273252.28
    158 rdf:type schema:Person
    159 sg:person.01260452574.41 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    160 schema:familyName Khasnobish
    161 schema:givenName Anwesha
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41
    163 rdf:type schema:Person
    164 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    165 schema:familyName Konar
    166 schema:givenName Amit
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
    168 rdf:type schema:Person
    169 sg:person.014222544617.16 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    170 schema:familyName Pal
    171 schema:givenName Monalisa
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222544617.16
    173 rdf:type schema:Person
    174 sg:pub.10.1007/s11517-006-0122-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012290224
    175 https://doi.org/10.1007/s11517-006-0122-5
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11517-007-0248-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009964467
    178 https://doi.org/10.1007/s11517-007-0248-0
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11517-010-0723-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046946647
    181 https://doi.org/10.1007/s11517-010-0723-x
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11517-011-0836-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005105315
    184 https://doi.org/10.1007/s11517-011-0836-x
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11517-014-1142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051017411
    187 https://doi.org/10.1007/s11517-014-1142-1
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.cageo.2008.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048356970
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.neucom.2014.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020621457
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.robot.2012.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039891045
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.robot.2013.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049327002
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/s0957-4158(03)00048-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019438382
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1017/cbo9780511809682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667572
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1088/0960-1317/15/5/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040569666
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1088/1741-2560/10/2/026014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020537896
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1093/biostatistics/kxj035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051189952
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1093/scan/nsp052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025307593
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/iceci.2014.6767376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093943293
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/icorr.2011.5975397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078507394
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/iecon.2006.347618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095694100
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1109/iros.2012.6386142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094907012
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1109/robot.2010.5509675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094828676
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1109/tpami.2004.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742722
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1109/tpami.2005.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742820
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1109/tro.2011.2127110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785246
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1145/1015330.1015341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011745635
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.3844/ajas.2009.512.517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071453711
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.3844/ajassp.2009.512.517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071454861
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.3844/ajassp.2011.26.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071455264
    232 rdf:type schema:CreativeWork
    233 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
    234 schema:name Department of Electronics and Telecommunication Engineering, Jadavpur University, Raja S.C. Mullick Road, 700032, Kolkata, West Bengal, India
    235 School of Bioscience and Engineering, Jadavpur University, Raja S.C. Mullick Road, 700032, Kolkata, West Bengal, India
    236 rdf:type schema:Organization
    237 https://www.grid.ac/institutes/grid.444703.0 schema:alternateName National Institute of Technology Rourkela
    238 schema:name Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...