A novel approach for analysis of altered gait variability in amyotrophic lateral sclerosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

Yi Xia, Qingwei Gao, Yixiang Lu, Qiang Ye

ABSTRACT

Gait variability reflects important information for the maintenance of human beings' health. For pathological populations, changes in gait variability signal the presence of abnormal motor control strategies. Quantitative analysis of the altered gait variability in patients with amyotrophic lateral sclerosis (ALS) will be helpful for either diagnosing or monitoring pathological progression of the disease. Thus, we applied Teager energy operator, an energy measure that can highlight the deviations from moment to moment of a time series, to produce an instantaneous energy time series. Then, two important features were extracted to assess the variability of the new time series. First, the standard deviation statistics were used to measure the magnitude of the variability. Second, to quantify the temporal structural characteristics of the variability, the permutation entropy was applied as a tool from the nonlinear dynamics. In the classification experiments, the two proposed features were input to the support vector machine classifier, and the dataset consists of 12 ALS patients and 16 healthy control subjects. The experimental results showed that an area of 0.9643 under the receiver operating characteristic curve was achieved, and the classification accuracy evaluated by leave-one-out cross-validation method could reach 92.86 %. More... »

PAGES

1399-1408

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11517-015-1413-5

DOI

http://dx.doi.org/10.1007/s11517-015-1413-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023227848

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26518306


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amyotrophic Lateral Sclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Entropy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gait", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gait Disorders, Neurologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monitoring, Physiologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anhui University", 
          "id": "https://www.grid.ac/institutes/grid.252245.6", 
          "name": [
            "School of Electrical Engineering and Automation, Anhui University, 111 JiuLong Road, 230601, Hefei, Anhui, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Yi", 
        "id": "sg:person.012574267722.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012574267722.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui University", 
          "id": "https://www.grid.ac/institutes/grid.252245.6", 
          "name": [
            "School of Electrical Engineering and Automation, Anhui University, 111 JiuLong Road, 230601, Hefei, Anhui, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Qingwei", 
        "id": "sg:person.014476575753.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476575753.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui University", 
          "id": "https://www.grid.ac/institutes/grid.252245.6", 
          "name": [
            "School of Electrical Engineering and Automation, Anhui University, 111 JiuLong Road, 230601, Hefei, Anhui, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yixiang", 
        "id": "sg:person.014455415003.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455415003.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Sport Institute", 
          "id": "https://www.grid.ac/institutes/grid.443516.1", 
          "name": [
            "Information Technology Research Centre, Nanjing Sport Institute, 210014, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Qiang", 
        "id": "sg:person.01050210105.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050210105.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymssp.2011.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001164310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(94)00074-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003547311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2012.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004949188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2013.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005520432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/498385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005862806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0394.2009.00479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006847919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0394.2009.00479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006847919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2013.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009806368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2012.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011468408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2003.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014354376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2003.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014354376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2010.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014405727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e14081553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015060301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-013-1918-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017800528", 
          "https://doi.org/10.1007/s00542-013-1918-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2007.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021032500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2012.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-006-0226-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021886213", 
          "https://doi.org/10.1007/s00421-006-0226-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-006-0226-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021886213", 
          "https://doi.org/10.1007/s00421-006-0226-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2015.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022188992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/342009.335437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023478359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025111365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030996668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2004.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035052823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2522/ptj.20080130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037095950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-009-0527-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037326622", 
          "https://doi.org/10.1007/s11517-009-0527-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-009-0527-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037326622", 
          "https://doi.org/10.1007/s11517-009-0527-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19980515)17:9<1033::aid-sim784>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038474417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gaitpost.2007.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039729444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.04.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041435984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.is.2013.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043745514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2011.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046369975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinbiomech.2003.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048676959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2014.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049903425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1324008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1324008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/97.404130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061250967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2002.800406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2012.2190065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.494-495.1889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071957543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.2000.88.6.2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074650712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081909911", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1995.78.1.349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082476511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1996.80.5.1448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082928428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1993.319457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086258097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1990.115702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086330649"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Gait variability reflects important information for the maintenance of human beings' health. For pathological populations, changes in gait variability signal the presence of abnormal motor control strategies. Quantitative analysis of the altered gait variability in patients with amyotrophic lateral sclerosis (ALS) will be helpful for either diagnosing or monitoring pathological progression of the disease. Thus, we applied Teager energy operator, an energy measure that can highlight the deviations from moment to moment of a time series, to produce an instantaneous energy time series. Then, two important features were extracted to assess the variability of the new time series. First, the standard deviation statistics were used to measure the magnitude of the variability. Second, to quantify the temporal structural characteristics of the variability, the permutation entropy was applied as a tool from the nonlinear dynamics. In the classification experiments, the two proposed features were input to the support vector machine classifier, and the dataset consists of 12 ALS patients and 16 healthy control subjects. The experimental results showed that an area of 0.9643 under the receiver operating characteristic curve was achieved, and the classification accuracy evaluated by leave-one-out cross-validation method could reach 92.86\u00a0%. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11517-015-1413-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "A novel approach for analysis of altered gait variability in amyotrophic lateral sclerosis", 
    "pagination": "1399-1408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ea992fd9b179fa99514ab907bfc745ac79991ad719825092cde29b6944c5675"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26518306"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11517-015-1413-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023227848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11517-015-1413-5", 
      "https://app.dimensions.ai/details/publication/pub.1023227848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11517-015-1413-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1413-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1413-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1413-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1413-5'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      84 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11517-015-1413-5 schema:about N08532b3343724f63b3e33ffe0127a5c3
2 N1f7a9b8408e845998c797aad95f74d55
3 N1fd9088d921d4f2b8eaee9cc3f305799
4 N26b7c91c9e5042fbbdf3dbe246396107
5 N2bf56a4bf7f24b81a53c24e99b76c214
6 N40422d16274d4923a25cd5585eef3533
7 N7f758146bdcd4383b8942a9868a5bf15
8 N9a2fb9d1731e4914b5f8b1cc67e8bb45
9 Ne95e83cb6f7d4e66978bd689827461a9
10 Ned3cbeb7d3f5491293d58266cf8232f1
11 Nf45cea278df841df97f75ca926b9da89
12 Nf51b001d70244926863218a6b1777408
13 Nf53b0c3806cf49a7bcdb212dae5fc1ad
14 Nff826044ff904ac08adfc5663c2ef0f5
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author N3e2421b6ede54e71bee25cf00fc977a8
18 schema:citation sg:pub.10.1007/s00421-006-0226-5
19 sg:pub.10.1007/s00542-013-1918-5
20 sg:pub.10.1007/s11517-009-0527-z
21 https://app.dimensions.ai/details/publication/pub.1081909911
22 https://doi.org/10.1002/(sici)1097-0258(19980515)17:9<1033::aid-sim784>3.0.co;2-z
23 https://doi.org/10.1016/0021-9290(94)00074-e
24 https://doi.org/10.1016/j.bspc.2013.11.008
25 https://doi.org/10.1016/j.bspc.2015.02.002
26 https://doi.org/10.1016/j.clinbiomech.2003.10.003
27 https://doi.org/10.1016/j.clinph.2013.06.023
28 https://doi.org/10.1016/j.cmpb.2012.04.004
29 https://doi.org/10.1016/j.enconman.2010.11.006
30 https://doi.org/10.1016/j.eswa.2013.12.026
31 https://doi.org/10.1016/j.gaitpost.2007.07.009
32 https://doi.org/10.1016/j.ins.2015.04.047
33 https://doi.org/10.1016/j.is.2013.11.002
34 https://doi.org/10.1016/j.jbiomech.2004.05.002
35 https://doi.org/10.1016/j.measurement.2012.04.013
36 https://doi.org/10.1016/j.medengphy.2007.04.014
37 https://doi.org/10.1016/j.medengphy.2010.10.023
38 https://doi.org/10.1016/j.medengphy.2011.09.026
39 https://doi.org/10.1016/j.physa.2003.08.022
40 https://doi.org/10.1016/j.ymssp.2011.11.022
41 https://doi.org/10.1016/j.ymssp.2012.08.018
42 https://doi.org/10.1016/j.ymssp.2014.05.006
43 https://doi.org/10.1063/1.1324008
44 https://doi.org/10.1103/physrevlett.88.174102
45 https://doi.org/10.1109/97.404130
46 https://doi.org/10.1109/icassp.1990.115702
47 https://doi.org/10.1109/icassp.1993.319457
48 https://doi.org/10.1109/tsp.2002.800406
49 https://doi.org/10.1109/tsp.2012.2190065
50 https://doi.org/10.1111/j.1468-0394.2009.00479.x
51 https://doi.org/10.1145/342009.335437
52 https://doi.org/10.1152/jappl.1995.78.1.349
53 https://doi.org/10.1152/jappl.1996.80.5.1448
54 https://doi.org/10.1152/jappl.2000.88.6.2045
55 https://doi.org/10.1155/2013/498385
56 https://doi.org/10.2522/ptj.20080130
57 https://doi.org/10.3390/e14081553
58 https://doi.org/10.4028/www.scientific.net/amm.494-495.1889
59 schema:datePublished 2016-09
60 schema:datePublishedReg 2016-09-01
61 schema:description Gait variability reflects important information for the maintenance of human beings' health. For pathological populations, changes in gait variability signal the presence of abnormal motor control strategies. Quantitative analysis of the altered gait variability in patients with amyotrophic lateral sclerosis (ALS) will be helpful for either diagnosing or monitoring pathological progression of the disease. Thus, we applied Teager energy operator, an energy measure that can highlight the deviations from moment to moment of a time series, to produce an instantaneous energy time series. Then, two important features were extracted to assess the variability of the new time series. First, the standard deviation statistics were used to measure the magnitude of the variability. Second, to quantify the temporal structural characteristics of the variability, the permutation entropy was applied as a tool from the nonlinear dynamics. In the classification experiments, the two proposed features were input to the support vector machine classifier, and the dataset consists of 12 ALS patients and 16 healthy control subjects. The experimental results showed that an area of 0.9643 under the receiver operating characteristic curve was achieved, and the classification accuracy evaluated by leave-one-out cross-validation method could reach 92.86 %.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N2ea66e9f66454710996112a3749e9bc6
66 N4ca4bcbe021d4fe2b02115ecfb458eee
67 sg:journal.1005585
68 schema:name A novel approach for analysis of altered gait variability in amyotrophic lateral sclerosis
69 schema:pagination 1399-1408
70 schema:productId N1510ea4cc79242f39c8ac8f4e65e973f
71 N1602b4dca301459380e63903bb9eeac8
72 N5ff21f7475604408ac0e0034a1e35c0a
73 N6e44d15fbaa84a0e8ecfc48e66fa6466
74 Na499f317a21c49bcbf82ba5694968c28
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023227848
76 https://doi.org/10.1007/s11517-015-1413-5
77 schema:sdDatePublished 2019-04-10T16:44
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N5e3dff7b663747d0a830117812f88b24
80 schema:url http://link.springer.com/10.1007%2Fs11517-015-1413-5
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N08532b3343724f63b3e33ffe0127a5c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Humans
86 rdf:type schema:DefinedTerm
87 N1510ea4cc79242f39c8ac8f4e65e973f schema:name readcube_id
88 schema:value 6ea992fd9b179fa99514ab907bfc745ac79991ad719825092cde29b6944c5675
89 rdf:type schema:PropertyValue
90 N1602b4dca301459380e63903bb9eeac8 schema:name dimensions_id
91 schema:value pub.1023227848
92 rdf:type schema:PropertyValue
93 N19dde9733e45428f8dd6fc33f79921ac rdf:first sg:person.01050210105.02
94 rdf:rest rdf:nil
95 N1f7a9b8408e845998c797aad95f74d55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Aged
97 rdf:type schema:DefinedTerm
98 N1fd9088d921d4f2b8eaee9cc3f305799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Amyotrophic Lateral Sclerosis
100 rdf:type schema:DefinedTerm
101 N26b7c91c9e5042fbbdf3dbe246396107 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Gait Disorders, Neurologic
103 rdf:type schema:DefinedTerm
104 N2bf56a4bf7f24b81a53c24e99b76c214 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Gait
106 rdf:type schema:DefinedTerm
107 N2ea66e9f66454710996112a3749e9bc6 schema:volumeNumber 54
108 rdf:type schema:PublicationVolume
109 N3e2421b6ede54e71bee25cf00fc977a8 rdf:first sg:person.012574267722.87
110 rdf:rest N55a5c2a5ca9748c9852d6a9b2f3da582
111 N40422d16274d4923a25cd5585eef3533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Monitoring, Physiologic
113 rdf:type schema:DefinedTerm
114 N4ca4bcbe021d4fe2b02115ecfb458eee schema:issueNumber 9
115 rdf:type schema:PublicationIssue
116 N55a5c2a5ca9748c9852d6a9b2f3da582 rdf:first sg:person.014476575753.88
117 rdf:rest Na30d45c84e0349e089c9bdc945a5b306
118 N5e3dff7b663747d0a830117812f88b24 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N5ff21f7475604408ac0e0034a1e35c0a schema:name doi
121 schema:value 10.1007/s11517-015-1413-5
122 rdf:type schema:PropertyValue
123 N6e44d15fbaa84a0e8ecfc48e66fa6466 schema:name nlm_unique_id
124 schema:value 7704869
125 rdf:type schema:PropertyValue
126 N7f758146bdcd4383b8942a9868a5bf15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Entropy
128 rdf:type schema:DefinedTerm
129 N9a2fb9d1731e4914b5f8b1cc67e8bb45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Middle Aged
131 rdf:type schema:DefinedTerm
132 Na30d45c84e0349e089c9bdc945a5b306 rdf:first sg:person.014455415003.38
133 rdf:rest N19dde9733e45428f8dd6fc33f79921ac
134 Na499f317a21c49bcbf82ba5694968c28 schema:name pubmed_id
135 schema:value 26518306
136 rdf:type schema:PropertyValue
137 Ne95e83cb6f7d4e66978bd689827461a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Case-Control Studies
139 rdf:type schema:DefinedTerm
140 Ned3cbeb7d3f5491293d58266cf8232f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Adult
142 rdf:type schema:DefinedTerm
143 Nf45cea278df841df97f75ca926b9da89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Support Vector Machine
145 rdf:type schema:DefinedTerm
146 Nf51b001d70244926863218a6b1777408 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Female
148 rdf:type schema:DefinedTerm
149 Nf53b0c3806cf49a7bcdb212dae5fc1ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name ROC Curve
151 rdf:type schema:DefinedTerm
152 Nff826044ff904ac08adfc5663c2ef0f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Male
154 rdf:type schema:DefinedTerm
155 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
156 schema:name Information and Computing Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
159 schema:name Artificial Intelligence and Image Processing
160 rdf:type schema:DefinedTerm
161 sg:journal.1005585 schema:issn 1357-5481
162 1741-0444
163 schema:name Medical & Biological Engineering & Computing
164 rdf:type schema:Periodical
165 sg:person.01050210105.02 schema:affiliation https://www.grid.ac/institutes/grid.443516.1
166 schema:familyName Ye
167 schema:givenName Qiang
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050210105.02
169 rdf:type schema:Person
170 sg:person.012574267722.87 schema:affiliation https://www.grid.ac/institutes/grid.252245.6
171 schema:familyName Xia
172 schema:givenName Yi
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012574267722.87
174 rdf:type schema:Person
175 sg:person.014455415003.38 schema:affiliation https://www.grid.ac/institutes/grid.252245.6
176 schema:familyName Lu
177 schema:givenName Yixiang
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455415003.38
179 rdf:type schema:Person
180 sg:person.014476575753.88 schema:affiliation https://www.grid.ac/institutes/grid.252245.6
181 schema:familyName Gao
182 schema:givenName Qingwei
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476575753.88
184 rdf:type schema:Person
185 sg:pub.10.1007/s00421-006-0226-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021886213
186 https://doi.org/10.1007/s00421-006-0226-5
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00542-013-1918-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017800528
189 https://doi.org/10.1007/s00542-013-1918-5
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s11517-009-0527-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037326622
192 https://doi.org/10.1007/s11517-009-0527-z
193 rdf:type schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1081909911 schema:CreativeWork
195 https://doi.org/10.1002/(sici)1097-0258(19980515)17:9<1033::aid-sim784>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038474417
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0021-9290(94)00074-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1003547311
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.bspc.2013.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005520432
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.bspc.2015.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022188992
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.clinbiomech.2003.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048676959
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.clinph.2013.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009806368
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.cmpb.2012.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004949188
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.enconman.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025111365
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.eswa.2013.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030996668
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.gaitpost.2007.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039729444
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ins.2015.04.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041435984
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.is.2013.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043745514
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.jbiomech.2004.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035052823
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.measurement.2012.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011468408
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.medengphy.2007.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021032500
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.medengphy.2010.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014405727
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.medengphy.2011.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046369975
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.physa.2003.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014354376
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.ymssp.2011.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001164310
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.ymssp.2012.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424485
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.ymssp.2014.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049903425
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1063/1.1324008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057694790
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/physrevlett.88.174102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824770
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/97.404130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061250967
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/icassp.1990.115702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086330649
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1109/icassp.1993.319457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086258097
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/tsp.2002.800406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798655
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1109/tsp.2012.2190065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803213
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/j.1468-0394.2009.00479.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006847919
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1145/342009.335437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023478359
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1152/jappl.1995.78.1.349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082476511
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1152/jappl.1996.80.5.1448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082928428
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1152/jappl.2000.88.6.2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074650712
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1155/2013/498385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005862806
262 rdf:type schema:CreativeWork
263 https://doi.org/10.2522/ptj.20080130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037095950
264 rdf:type schema:CreativeWork
265 https://doi.org/10.3390/e14081553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015060301
266 rdf:type schema:CreativeWork
267 https://doi.org/10.4028/www.scientific.net/amm.494-495.1889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071957543
268 rdf:type schema:CreativeWork
269 https://www.grid.ac/institutes/grid.252245.6 schema:alternateName Anhui University
270 schema:name School of Electrical Engineering and Automation, Anhui University, 111 JiuLong Road, 230601, Hefei, Anhui, People’s Republic of China
271 rdf:type schema:Organization
272 https://www.grid.ac/institutes/grid.443516.1 schema:alternateName Nanjing Sport Institute
273 schema:name Information Technology Research Centre, Nanjing Sport Institute, 210014, Nanjing, People’s Republic of China
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...