A simple and inexpensive test-rig for evaluating the performance of motion sensors used in movement disorders research View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03

AUTHORS

Thushara Perera, Shivanthan A. C. Yohanandan, Hugh J. McDermott

ABSTRACT

Since the advent of electromyogram recording, precise measures of tremor and gait have been used to study movement disorders such as Parkinson's disease. Now, a wide range of accelerometers and other motion-tracking technologies exist to better inform researchers and clinicians, yet such systems are rarely tested for accuracy or suitability before use. Our inexpensive test-rig can produce sinusoidal displacements using a simple cantilever system driven by a subwoofer. Controlled sinusoids were generated using computer software, and the displacement amplitudes of the test-rig were verified with fiducial marker tracking. To illustrate the use of the test-rig, we evaluated an accelerometer and an electromagnetic motion tracker. Accelerometry recordings were accurate to within ±0.09 g of actual peak-to-peak amplitude with a frequency response close to unity gain between 1 and 20 Hz. The electromagnetic sensor underestimated peak displacement by 2.68 mm, which was largely due to a diminishing gain with increasing frequency. Both sensors had low distortion. Overall sensitivity was limited by noise for the accelerometer and quantisation resolution for the electromagnetic sensor. Our simple and low-cost test-rig can be used to bench-test sensors used in movement disorders research. It was able to produce reliable sinusoidal displacements and worked across the 1- to 20-Hz frequency range. More... »

PAGES

333-339

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11517-015-1314-7

DOI

http://dx.doi.org/10.1007/s11517-015-1314-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031142404

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26018757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Accelerometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bionics Institute", 
          "id": "https://www.grid.ac/institutes/grid.431365.6", 
          "name": [
            "Bionics Institute, 384-388 Albert Street, 3002, East Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perera", 
        "givenName": "Thushara", 
        "id": "sg:person.01326254726.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326254726.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Bionics Institute, 384-388 Albert Street, 3002, East Melbourne, VIC, Australia", 
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yohanandan", 
        "givenName": "Shivanthan A. C.", 
        "id": "sg:person.01255305567.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255305567.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Bionics Institute, 384-388 Albert Street, 3002, East Melbourne, VIC, Australia", 
            "Medical Bionics Department, The University of Melbourne, 3010, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDermott", 
        "givenName": "Hugh J.", 
        "id": "sg:person.01145532120.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145532120.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mds.22445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000687133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005010394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00127893-199709000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005522627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00127893-199709000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005522627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2014.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007537742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.1064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024781188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.25628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049426764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1350-4533(00)00004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049967766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jpd-2012-11071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078770582"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "Since the advent of electromyogram recording, precise measures of tremor and gait have been used to study movement disorders such as Parkinson's disease. Now, a wide range of accelerometers and other motion-tracking technologies exist to better inform researchers and clinicians, yet such systems are rarely tested for accuracy or suitability before use. Our inexpensive test-rig can produce sinusoidal displacements using a simple cantilever system driven by a subwoofer. Controlled sinusoids were generated using computer software, and the displacement amplitudes of the test-rig were verified with fiducial marker tracking. To illustrate the use of the test-rig, we evaluated an accelerometer and an electromagnetic motion tracker. Accelerometry recordings were accurate to within\u00a0\u00b10.09\u00a0g of actual peak-to-peak amplitude with a frequency response close to unity gain between 1 and 20\u00a0Hz. The electromagnetic sensor underestimated peak displacement by 2.68\u00a0mm, which was largely due to a diminishing gain with increasing frequency. Both sensors had low distortion. Overall sensitivity was limited by noise for the accelerometer and quantisation resolution for the electromagnetic sensor. Our simple and low-cost test-rig can be used to bench-test sensors used in movement disorders research. It was able to produce reliable sinusoidal displacements and worked across the 1- to 20-Hz frequency range. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11517-015-1314-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "A simple and inexpensive test-rig for evaluating the performance of motion sensors used in movement disorders research", 
    "pagination": "333-339", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "945c0933dc7449d17a3161032257c4654a990519aabf3352f8fc7227c93a7de2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26018757"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11517-015-1314-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031142404"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11517-015-1314-7", 
      "https://app.dimensions.ai/details/publication/pub.1031142404"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11517-015-1314-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1314-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1314-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1314-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-015-1314-7'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      45 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11517-015-1314-7 schema:about N25ecd4a8ecd04b5dbef0311cd1967b66
2 N26c7f7d65e5243459cb27ac3d696edc6
3 N6cadc588288049fc805890e3dc885d7a
4 N7c7ed9829f4d4a2ebc2d724b086811ff
5 Nba0f0c95ac89491794eb1403cff3c605
6 Ne2cdf188967744259fffcf817db361ae
7 Ne7624086e86e464bb6b83f0770c2f205
8 anzsrc-for:09
9 anzsrc-for:0906
10 schema:author N7794d9c8021a4c30a53005b19f73f3cc
11 schema:citation https://doi.org/10.1002/mds.1064
12 https://doi.org/10.1002/mds.22445
13 https://doi.org/10.1002/mds.25628
14 https://doi.org/10.1016/j.clinph.2005.03.014
15 https://doi.org/10.1016/j.jneumeth.2014.04.021
16 https://doi.org/10.1016/s1350-4533(00)00004-7
17 https://doi.org/10.1097/00127893-199709000-00003
18 https://doi.org/10.1109/embc.2012.6346338
19 https://doi.org/10.3233/jpd-2012-11071
20 schema:datePublished 2016-03
21 schema:datePublishedReg 2016-03-01
22 schema:description Since the advent of electromyogram recording, precise measures of tremor and gait have been used to study movement disorders such as Parkinson's disease. Now, a wide range of accelerometers and other motion-tracking technologies exist to better inform researchers and clinicians, yet such systems are rarely tested for accuracy or suitability before use. Our inexpensive test-rig can produce sinusoidal displacements using a simple cantilever system driven by a subwoofer. Controlled sinusoids were generated using computer software, and the displacement amplitudes of the test-rig were verified with fiducial marker tracking. To illustrate the use of the test-rig, we evaluated an accelerometer and an electromagnetic motion tracker. Accelerometry recordings were accurate to within ±0.09 g of actual peak-to-peak amplitude with a frequency response close to unity gain between 1 and 20 Hz. The electromagnetic sensor underestimated peak displacement by 2.68 mm, which was largely due to a diminishing gain with increasing frequency. Both sensors had low distortion. Overall sensitivity was limited by noise for the accelerometer and quantisation resolution for the electromagnetic sensor. Our simple and low-cost test-rig can be used to bench-test sensors used in movement disorders research. It was able to produce reliable sinusoidal displacements and worked across the 1- to 20-Hz frequency range.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N0c77582fb36644a083579913b58b108c
27 Neda683b319434e89aa26d295de69ee1e
28 sg:journal.1005585
29 schema:name A simple and inexpensive test-rig for evaluating the performance of motion sensors used in movement disorders research
30 schema:pagination 333-339
31 schema:productId N15d6b6a71b84405999af2fd36407d712
32 N31bc207a870347d3b39984f4e673d61b
33 N6c10d90d6cf7439a84846b673651c5da
34 N9543f0c2988e43fa84c00239997b9dc3
35 N96aee33d9a0c4f62a5a2fd66462dffc7
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031142404
37 https://doi.org/10.1007/s11517-015-1314-7
38 schema:sdDatePublished 2019-04-10T16:45
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N8094b287dbf4426c8253613d49c99f00
41 schema:url http://link.springer.com/10.1007%2Fs11517-015-1314-7
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0c77582fb36644a083579913b58b108c schema:volumeNumber 54
46 rdf:type schema:PublicationVolume
47 N15d6b6a71b84405999af2fd36407d712 schema:name pubmed_id
48 schema:value 26018757
49 rdf:type schema:PropertyValue
50 N25ecd4a8ecd04b5dbef0311cd1967b66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Humans
52 rdf:type schema:DefinedTerm
53 N26c7f7d65e5243459cb27ac3d696edc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Accelerometry
55 rdf:type schema:DefinedTerm
56 N31bc207a870347d3b39984f4e673d61b schema:name doi
57 schema:value 10.1007/s11517-015-1314-7
58 rdf:type schema:PropertyValue
59 N6c10d90d6cf7439a84846b673651c5da schema:name readcube_id
60 schema:value 945c0933dc7449d17a3161032257c4654a990519aabf3352f8fc7227c93a7de2
61 rdf:type schema:PropertyValue
62 N6cadc588288049fc805890e3dc885d7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Computer Simulation
64 rdf:type schema:DefinedTerm
65 N7794d9c8021a4c30a53005b19f73f3cc rdf:first sg:person.01326254726.08
66 rdf:rest Nfa3f4d30de814cdcbd21d1f5753603fa
67 N7c7ed9829f4d4a2ebc2d724b086811ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Motion
69 rdf:type schema:DefinedTerm
70 N8094b287dbf4426c8253613d49c99f00 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N811bd6943b854d5bacfb23c63361a69d rdf:first sg:person.01145532120.72
73 rdf:rest rdf:nil
74 N9543f0c2988e43fa84c00239997b9dc3 schema:name nlm_unique_id
75 schema:value 7704869
76 rdf:type schema:PropertyValue
77 N96aee33d9a0c4f62a5a2fd66462dffc7 schema:name dimensions_id
78 schema:value pub.1031142404
79 rdf:type schema:PropertyValue
80 Nba0f0c95ac89491794eb1403cff3c605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Movement Disorders
82 rdf:type schema:DefinedTerm
83 Ne2cdf188967744259fffcf817db361ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Research
85 rdf:type schema:DefinedTerm
86 Ne7624086e86e464bb6b83f0770c2f205 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Physiology
88 rdf:type schema:DefinedTerm
89 Neda683b319434e89aa26d295de69ee1e schema:issueNumber 2-3
90 rdf:type schema:PublicationIssue
91 Nfa3f4d30de814cdcbd21d1f5753603fa rdf:first sg:person.01255305567.37
92 rdf:rest N811bd6943b854d5bacfb23c63361a69d
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
97 schema:name Electrical and Electronic Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1005585 schema:issn 1357-5481
100 1741-0444
101 schema:name Medical & Biological Engineering & Computing
102 rdf:type schema:Periodical
103 sg:person.01145532120.72 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
104 schema:familyName McDermott
105 schema:givenName Hugh J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145532120.72
107 rdf:type schema:Person
108 sg:person.01255305567.37 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
109 schema:familyName Yohanandan
110 schema:givenName Shivanthan A. C.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255305567.37
112 rdf:type schema:Person
113 sg:person.01326254726.08 schema:affiliation https://www.grid.ac/institutes/grid.431365.6
114 schema:familyName Perera
115 schema:givenName Thushara
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326254726.08
117 rdf:type schema:Person
118 https://doi.org/10.1002/mds.1064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024781188
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/mds.22445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000687133
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/mds.25628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049426764
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.clinph.2005.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005010394
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jneumeth.2014.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007537742
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s1350-4533(00)00004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049967766
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1097/00127893-199709000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005522627
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/embc.2012.6346338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078682097
133 rdf:type schema:CreativeWork
134 https://doi.org/10.3233/jpd-2012-11071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078770582
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
137 schema:name Bionics Institute, 384-388 Albert Street, 3002, East Melbourne, VIC, Australia
138 Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Parkville, Australia
139 Medical Bionics Department, The University of Melbourne, 3010, Parkville, Australia
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.431365.6 schema:alternateName Bionics Institute
142 schema:name Bionics Institute, 384-388 Albert Street, 3002, East Melbourne, VIC, Australia
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...